

Quantum Gravity and Information in Expanding Universe @YITP, Kyoto U. Feb.19, 2025

Bulk reconstruction of de Sitter space from CFT Tadashi Takayanagi (YITP, Kyoto U.)

Based on JHEP02(2025)093 with Kazuki Doi, Naoki Ogawa, Kotaro Shinmyo, Yu-ki Suzuki

Center for Gravitational Physics and Quantum Information Yukawa Institute for Theoretical Physics, Kyoto University Bulk reconstruction of flat space from Carrollian CFT

Peng-Xiang Hao's talk

Contents

1 Introduction

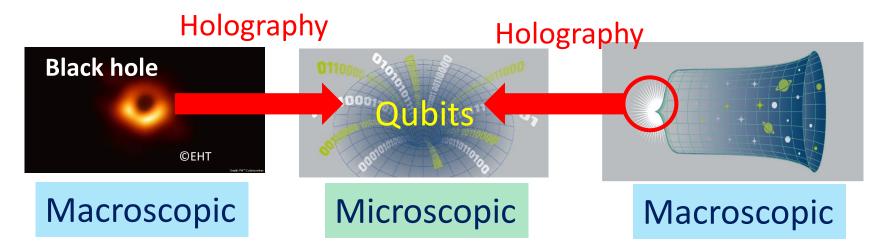
- 2 Quick review of dS3/CFT2
- ③ Bulk reconstruction in AdS3
- ④ Bulk reconstruction in dS3

(5) Conclusions

1 Introduction

Holography is a very promising approach to quantum gravity.

This is because holography is much like *a microscope* in thought experiments of quantum gravity.



However, the application of holography to cosmological spacetimes is very challenging !

Classification of Max. Symmetric Spaces and Holography

Туре	Geometry	Holography	Central charge
AdS Λ<0	AdS CFT Space	AdS/CFT [Maldacena 1997] Gravity in d+1 dim. AdS = d dim. CFT on R ^{1,d-1} ►Emergent Space	For d=2, $C = \frac{3R_{AdS}}{2G_N}$
dS Λ>0	CFT Time dS	 <u>dS/CFT</u> [Strominger 2001] Gravity in d+1 dim. dS ♀ d dim. Euclid CFT on S^d ►Emergent Time ? 	For d=2, $C = i \frac{3R_{dS}}{2G_N}$
Flat A=0		String theory can describe quantum gravity. Also celestial holography is proposed.	$C = i\infty$

Thermodynamics

AdS3 BH
$$S_{AdS} = 2\pi \sqrt{\frac{cE}{3}}$$

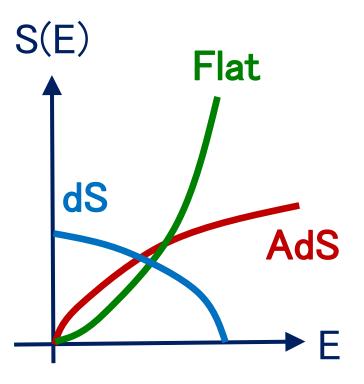
→It has a positive specific heat and is thermodynamically stable.

dS3 BH
$$S_{dS} = \frac{\pi R_{dS}}{2G_N} \sqrt{1 - 8G_N E}$$

→ The vacuum E= 0, the state
is maximally entangled !

4D flat BH
$$S_{Flat} = 4\pi G_N E^2$$

→ This leads to a negative specific heat. It is thermodynamically, unstable.



This is one of the main reasons
why holography in dS/flat space is very difficult !

Geometries

<u>AdS</u>

 $ds^2 = R_{AdS}^2 (-\operatorname{Cosh}^2 \rho dt^2 + d\rho^2 + \operatorname{Sinh}^2 \rho d\varphi^2)$

Gravity in a box \rightarrow closed quantum system (unitary) $\Delta = 1 + \sqrt{1 + M^2 R_{AdS}^2} \approx M R_{AdS}$ ρ

CFT ?

Semi

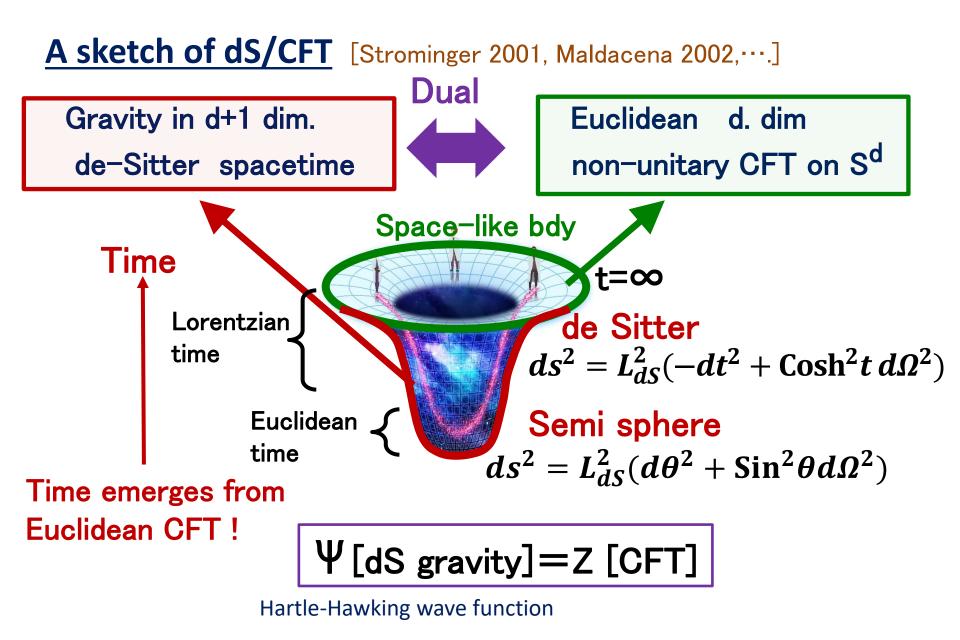
sphere

$$\underline{dS} \quad ds^2 = R_{dS}^2 (-dt^2 + \cosh^2 t \, d\Omega^2)$$

Closed universe, $\exists cosmological horizon$ \rightarrow open quantum system ? Non-Unitary CFTs ? $\Delta = 1 + \sqrt{1 - M^2 R_{dS}^2} \approx iMR_{dS}$

Flat
$$ds^2 = -dt^2 + dx^2$$

The boundary is situated at null Infinity →Open system ? Non-unitary ? Codim=2 holography ?



Why dS/CFT is much more difficult than AdS/CFT ?

[1] Dual Euclidean CFTs should be exotic and non-unitary !

A "standard" Euclidean CFTs is dual to gravity on hyperbolic space. e.g. dS3/CFT2 \rightarrow *Imaginary valued* central charge $c \approx i \frac{3L_{dS}}{2G_N}$!

[2] Time should emerge from Euclidean CFT !

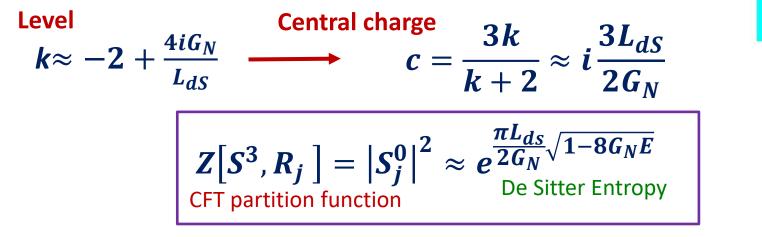
From a usual Euclidean CFT, a space-like direction will emerge as RG scale. How does a *time-like direction emerge* from a Euclidean CFT ?

[3] Entanglement entropy becomes complex valued ! Extremal surfaces in dS which end on its boundary are *time-like* !

Non-unitary CFT dual of 3 dim. dS

[Hikida-Nishioka-Taki-TT, 2021, 2022]

Large c limit of SU(2)k WZW model (a 2dim. CFT) = Einstein Gravity on 3 dim. de Sitter (radius L_{ds})



This non-unitary CFT is equivalent to the Liouville CFT

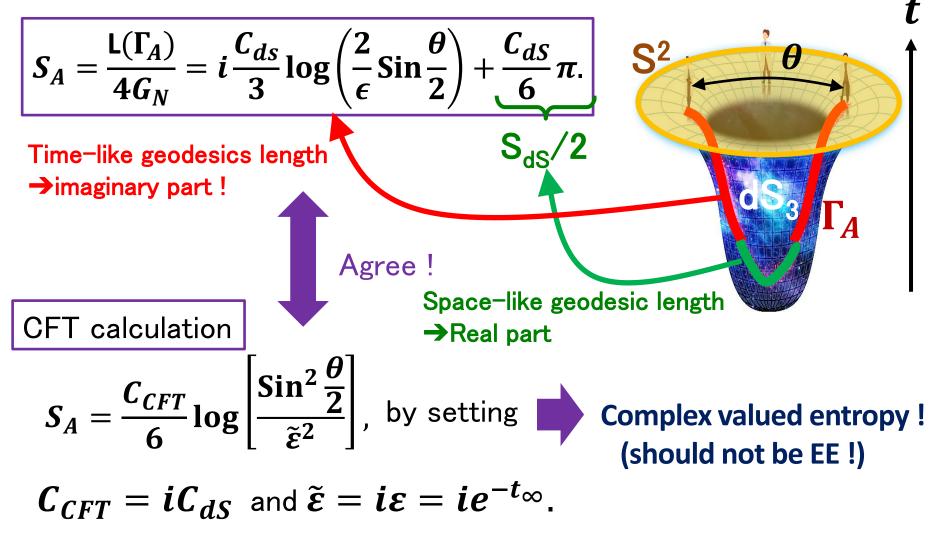
at
$$b^{-2} \approx \pm \frac{i}{4G_N}$$
 $I_{CFT}[\phi] = \int d^2x \left[\frac{1}{4\pi} (\partial_a \varphi \partial_a \varphi) + \frac{\mu e^{2b\varphi}}{complex} \right]$

[→Reproduced by Verlinde-Zhang 2024 via the Double Scaled SYK] [cf. Complex saddle approach: Heng-Yu Cheng's talk and Yusuke Taki's poster]

Holographic Entanglement Entropy in dS3/CFT2 ?

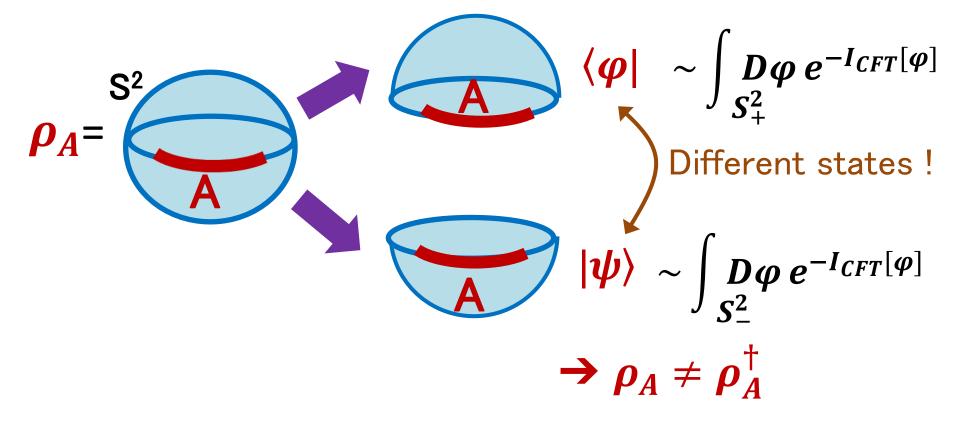
[Doi-Harper-Mollabashi-Taki-TT 2022, 2023]

In dS3/CFT2, the geodesic Γ_A becomes time-like and we find:



We argue it is more properly considered as pseudo entropy (PE).

Even though we still have $S_A = -\text{Tr}_A \rho_A \log \rho_A$ (=pseudo entropy), the reduced density matrix ρ_A is not Hermitian !



Note: the emergent time coordinate = imaginary part of PE.

Comment: Pseudo entropy in AdS/CFT

Q. What is HEE in a *Euclidean time-dependent AdS* geometry ?

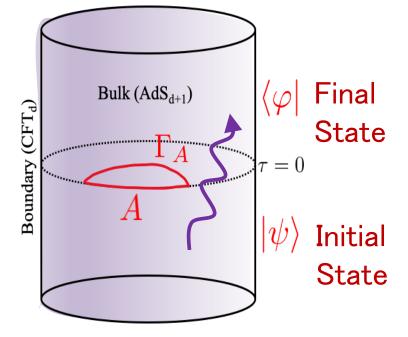
Holographic Pseudo Entropy

[Nakata-Taki-Tamaoka-Wei-TT, 2020]

$$S(\mathcal{T}_A^{\psi|\varphi}) = \min_{\Gamma_A} \frac{\operatorname{Area}(\Gamma_A)}{4G_N}$$

$$H_{tot} = H_A \otimes H_B \quad : \quad \tau^{\psi|\varphi} = \frac{|\psi\rangle\langle\varphi|}{\langle\varphi|\psi\rangle}.$$

$$\tau_A^{\psi|\varphi} = \mathrm{Tr}_B\left[\tau^{\psi|\varphi}\right]$$



Pseudo entropy:

$$S\left(\tau_{A}^{\psi|\varphi}\right) = -\mathrm{Tr}\left[\tau_{A}^{\psi|\varphi}\mathrm{log}\tau_{A}^{\psi|\varphi}\right].$$

In general, complex valued.

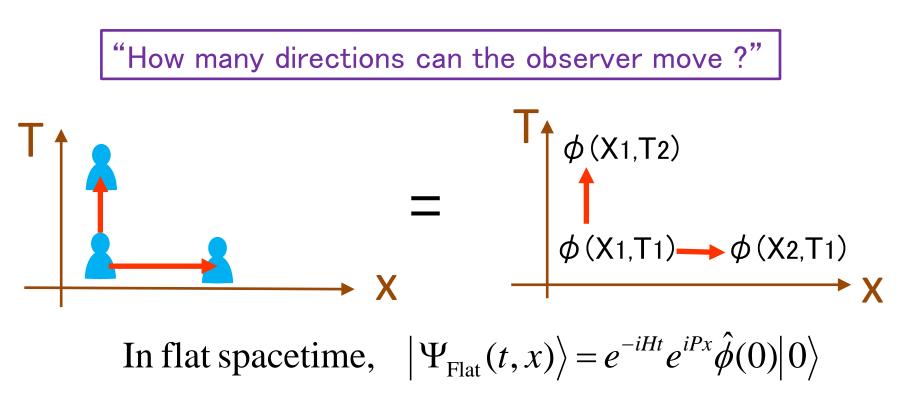
③ Bulk reconstruction in AdS3/CFT2

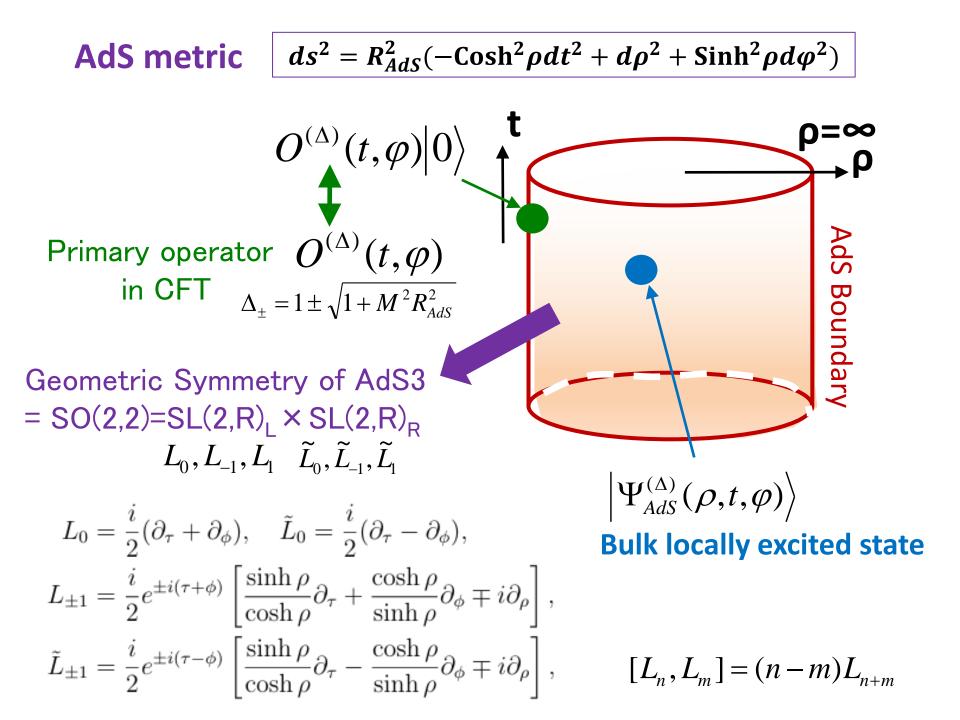
[Miyaji-Numasawa-Shiba-Watanabe-TT 2015, equivalent to HKLL formulation]

Consider an observer in 2d CFT.

→How does the observer feel that he or she lives in AdS3 ?

To probe the spacetime of AdS3, we introduce an local excitation.





Among 6 generators, 3 linear combinations act trivially on $|\Psi_{AdS}^{(\Delta)}(\rho,t,\varphi)\rangle$:

For
$$\rho = \tau = 0$$
, $\left| \Psi_{AdS}^{(\Delta)}(\rho = 0, t = 0, \varphi) \right\rangle$ satisfies
 $(L_0 - \tilde{L}_0) \left| \Psi_{AdS}^{(\Delta)}(0, 0) \right\rangle = (L_1 + \tilde{L}_{-1}) \left| \Psi_{AdS}^{(\Delta)}(0, 0) \right\rangle = (L_{-1} + \tilde{L}_1) \left| \Psi_{AdS}^{(\Delta)}(0, 0) \right\rangle = 0,$

In terms of SL(2,R) Ishibashi state

$$(L_n - L_{-n}) |I_{\Delta}\rangle = 0, \quad n = 0, \pm 1.$$
$$|I_{\Delta}\rangle = \sum_{k=0}^{\infty} |k\rangle_{\mathrm{L}} |k\rangle_{\mathrm{R}} . \qquad |k\rangle = \prod_{j=1}^{k} \sqrt{\frac{1}{j^2 + (\Delta - 1)j}} (L_{-1})^k |\Delta\rangle$$

the bulk locally excited state is solved as follows:

$$|\Psi_{\rm AdS}^{(\Delta)}(\tau=0,\rho=0)\rangle = e^{\frac{i\pi}{2}(L_0+\tilde{L}_0-\Delta)} |I_\Delta\rangle \,,$$

Finally we find quantum states in the CFT which describe localized excitations in AdS (cf. HKLL):

$$\left| \Psi_{AdS}^{(\Delta)}(\rho,t,\varphi) \right\rangle = e^{-i(L_{0}+\tilde{L}_{0})t} e^{i\varphi(L_{0}-\tilde{L}_{0})} e^{-\frac{\rho}{2}\left(L_{-1}+\tilde{L}_{-1}-L_{1}-\tilde{L}_{1}\right)} e^{\frac{\pi i}{2}(L_{0}+\tilde{L}_{0})} \left| I^{(\alpha)} \right\rangle.$$
CFT state dual to a localized SL(2,R) Crosscap State

excitation in the bulk AdS

SL(2,R) Ishibashi State

$$(L_n - \widetilde{L}_{-n}) \left| I^{(\alpha)} \right\rangle = 0, \quad n = 0, \pm 1. \qquad \left| I^{(\alpha)} \right\rangle = \sum_{k=0}^{\infty} c_k \left(L_{-1} \widetilde{L}_{-1} \right)^k \left| \Delta \right\rangle$$

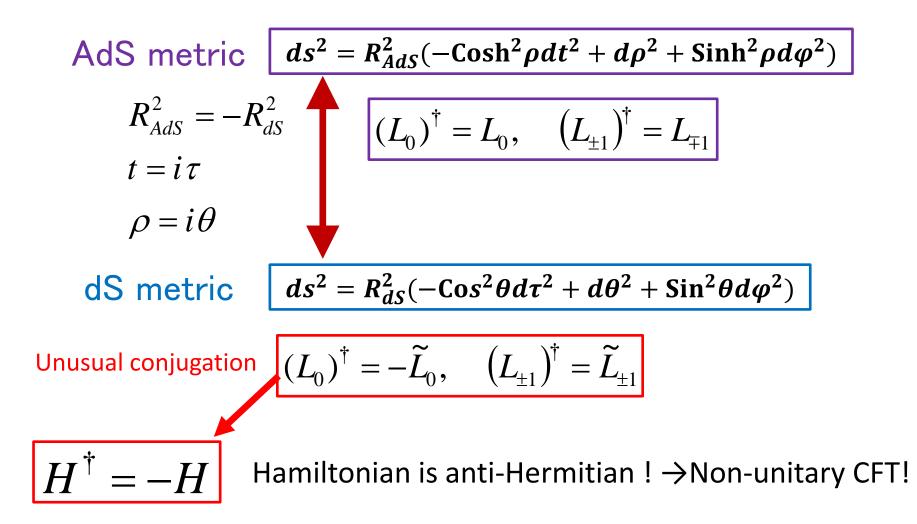
Note: ${Ln}(|n|>1)$ are not relevant as they change the CFT vacuum.

<u>2 pt function</u> This leads to the correct 2pt function in AdS3:

④ Bulk reconstruction in dS3/CFT2

[Doi-Ogawa-Shinmyo -Suzuki-TT 2024]

First we note the "formal" relation between AdS and dS:



Global Virasoro algebra of dS3 :

$$L_{0} = \frac{1}{2} (\partial_{t} + i\partial_{\phi}), \quad \tilde{L}_{0} = \frac{1}{2} (\partial_{t} - i\partial_{\phi}),$$
$$L_{\pm 1} = \frac{i}{2} e^{\pm(-t+i\phi)} \left[\frac{\sin\theta}{\cos\theta} \partial_{t} - i \frac{\cos\theta}{\sin\theta} \partial_{\phi} \mp i\partial_{\rho} \right],$$
$$\tilde{L}_{\pm 1} = \frac{i}{2} e^{\pm(-t-i\phi)} \left[\frac{\sin\theta}{\cos\theta} \partial_{t} + i \frac{\cos\theta}{\sin\theta} \partial_{\phi} \mp i\partial_{\rho} \right],$$

$$[L_m, L_n] = (m-n)L_{m+n}, \quad [\tilde{L}_m, \tilde{L}_n] = (m-n)\tilde{L}_{m+n}.$$

Among 6 generators, 3 linear combinations act trivially on $\left| \widetilde{\Psi}_{dS}^{(\Delta+)}(\rho,t,\varphi) \right\rangle$:

For
$$\theta = \tau = 0$$
, $\left| \widetilde{\Psi}_{dS}^{(\Delta^+)}(\theta = 0, t = 0, \varphi) \right\rangle$ satisfies $\begin{aligned} (L_0 - \widetilde{L}_0) |\Psi_{\Delta}\rangle &= 0, \\ (L_1 + \widetilde{L}_{-1}) |\Psi_{\Delta}\rangle &= 0, \\ (L_{-1} + \widetilde{L}_1) |\Psi_{\Delta}\rangle &= 0. \end{aligned}$

The bulk locally excited state is solved as follows:

$$|\Psi_{\Delta}\rangle = e^{i\frac{\pi}{2}(L_0 + \tilde{L}_0 - \Delta)} |I_{\Delta}\rangle,$$

A naïve analytical continuation from AdS leads to the following quantum state for a localized excitation in dS:

$$\left| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \right\rangle = e^{(L_{0}+\widetilde{L}_{0})\tau} e^{i\varphi(L_{0}-\widetilde{L}_{0})} e^{i\frac{\theta}{2}(L_{1}+\widetilde{L}_{1}-L_{-1}-\widetilde{L}_{-1})} e^{\frac{\pi i}{2}(L_{0}+\widetilde{L}_{0})} \left| I^{(\alpha)} \right\rangle.$$
Non-unitary evolution
 \rightarrow emergent time
SL(2,R) Crosscap State

Primary operator in CFT

$$O^{(\Delta_+)}(t, arphi)$$

$$(L_n - \widetilde{L}_{-n}) \Big| I^{(\alpha)} \Big\rangle = 0$$

$$\Delta_{\pm} = 1 \pm i \sqrt{M^2 R_{dS}^2 - 1}$$

However, this state *leads to the confusing result* (due to the *unusual conjugation*):

$$\left\langle \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi) \middle| \widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau',\theta',\varphi') \right\rangle = 0.$$

Resolution

The correct answer is found by requiring the CPT invariant state: $\left|\Psi_{E}^{(\Delta_{+})}(\tau,\theta,\varphi)\right\rangle = \frac{1}{\sqrt{i}} \left|\widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi)\right\rangle + CPT \cdot \left(\frac{1}{\sqrt{i}} \left|\widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi)\right\rangle\right)$ $= \frac{1}{\sqrt{i}} \left|\widetilde{\Psi}_{dS}^{(\Delta_{+})}(\tau,\theta,\varphi)\right\rangle + \sqrt{i} \left|\widetilde{\Psi}_{dS}^{(\Delta_{-})}(\tau,\pi-\theta,\varphi+\pi)\right\rangle.$ Antipodal map

[Gauging CPT in QG: Harlow-Numasawa 2023]

Indeed, this reproduces the correct dS Green function at Euclidean vacuum

$$\left\langle \Psi_{E}^{(\Delta_{+})}(x) \middle| \Psi_{E}^{(\Delta_{+})}(x') \right\rangle = G_{dS}^{E}(x,x') = \frac{\sinh \mu(\pi - D_{dS}(x,x'))}{4\pi \sinh \pi \mu \cdot \sin D_{dS}(x,x')}.$$

Summary • In dS/CFT, the Hamiltonian is anti Hermitian. →Emergence of time

• In dS/CFT, we need to gauge the CPT symmetry.

(5) Conclusions

- Holography for Λ>0 (dS) spacetimes is still in the development stage due to many exotic properties of dual CFTs.
- Complex valued entanglement entropy in dS/CFT can be interpreted as pseudo entropy.
- An analysis of CFT dual of bulk local excitation again reveal the non-Hermitian nature of the dual CFT.
- The CPT symmetry on a de-Sitter space should be gauged.

Future problems

- What does the reconstruction actually mean in dS/CFT ?
- Holography for more general cosmological spacetimes ?
- CFT Models of creation of the Universe ?