Probing dS bubbles with holographic tools

Mainly based on Phys. Rev. D 108 (2023) 026006,

in collaboration with R. Auzzi, G. Nardelli, and G. Pedde Ungureanu [arXiv:2302.03584 [hep-th]]

Extreme Universe A New Paradigm for Spacetime and Matter from Quantum Information

Grant-in-Aid for Transformative Research Areas (A)

Nicolò Zenoni

Quantum Gravity and Information in Expanding Universe @YITP February 19th, 2025

AdS/CFT

An expanding Universe

Rather than AdS, our Universe resembles the expanding de Sitter (dS) spacetime

Due to the **inflationary expansion**, dS contains a **cosmological horizon** (CH)

- > **No** singularity!
- > Observer dependent!

Where is the boundary?

A "Frankenstein" geometry

We can exploit the AdS **timelike boundary** by **embedding** dS_{d+1} into AdS_{d+1} [B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers, M. Rangamani, and S. Shenker, 2005]

The two spacetimes are glued along the (timelike) trajectory $r = R(\tau)$ of the bubble surface, according to **Israel junction conditions**:

- > The **metric** is **continuous** across the bubble surface
- > The jump in **extrinsic curvature** is $(K_{\theta}^{\theta})_{dS} (K_{\theta}^{\theta})_{AdS} = \frac{\kappa}{d-1}$, with κ the **bubble tension**

The bubble dynamics

Let us specialize to the case d = 2 ($L_{AdS} = 1$):

$$ds^{2} = -f_{i,o}(r)dt_{i,o}^{2} + \frac{dr^{2}}{f_{i,o}(r)} + r^{2}d\theta^{2}, \qquad f_{i,o}(r) = \begin{cases} 1 - \lambda r^{2} & \text{dS}_{3} \text{ spacetime} \\ r^{2} - \mu & \text{BTZ BH} \end{cases}$$

Israel junction conditions dictate the **equation of motion** for the bubble:

$$\dot{R}^{2} + V(R) = 0 , \qquad V(R) = f_{o}(R) - \frac{f_{i}(R) - f_{o}(R) - \kappa^{2}R^{2}}{4\kappa^{2}R^{2}} = -A\left(R^{2} - \beta + \frac{\gamma}{R^{2}}\right)$$
We have
$$A > 0, \gamma > 0$$
The maximum value
of $V(R)$ is **negative** if
$$\beta^{2} < 4\gamma$$

A time symmetric evolution

We consider **time symmetric** configurations, with $\beta^2 \ge 4\gamma$

The bubble catalogue

Nicolò Zenoni (YITP) - February 19th, 2025

Bag of gold

Inflating regions are behind the event horizon (due to the null energy condition)!

Entropy puzzle for geometries containing inflating regions

The inflating region must be described by a boundary **mixed** state [B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers, M. Rangamani, and S. Shenker, 2005]

Holographic entanglement entropy

A possible probe for the emergence of gravity from the boundary

$$S(A) = \frac{\mathcal{A}(\gamma_A)}{4G}$$

Holographic entanglement entropy [S. Ryu and T. Takayanagi, 2006] [V. E. Hubeny, M. Rangamani, and T. Takayanagi, 2007]

 γ_A : **Minimal (extremal)** surface **homologous** to the boundary subregion A(\exists **smooth** \mathcal{R} *s. t.* $\partial \mathcal{R} = \gamma_A \cup A$)

Probing small bubbles

Very small bubbles are initially **outside** the horizon...

The "area" of a **1-dimensional surface** described by r(l), $\theta(l)$ at constant $t_{i,o} = 0$ is

$$\mathcal{A} = \int \mathcal{L} \, dl \,, \qquad \mathcal{L} = \frac{(r')^2}{f_{i,o}(r)} + r^2 (\theta')^2$$

There is a **conserved** momentum $j \equiv \partial_{\theta'} \mathcal{L} = r^2 \theta'$

Plugging it into
$$\mathcal{L} = 1$$
 $\frac{d\theta}{dr} = \frac{\theta'}{r'} = \pm \frac{j}{r\sqrt{(r^2 - j^2)f_{i,o}(r)}}$

Minimal geodesics

The "refraction" condition $\theta'_i = \theta'_o$ implies that *j* is the **same** inside and outside the bubble

For $\Delta \theta_1 \leq \Delta \theta \leq \Delta \theta_2$ there are two geodesics inside and one outside the bubble

Entanglement entropy for small bubbles

The entanglement entropy is **smaller** due to the bubble! Similar for bubbles of vacuum AdS [R. Antonelli and I. Basile, 2018]

Entanglement for bags of gold

Holographic entanglement entropy can probe the bubble [V. E. Hubeny, H. Maxfield, M. Rangamani, and E. Tonni, 2013]

Killing field ∂_t for **full** spacetime

Taken from arXiv:1306.4004 [hep-th]

$$S(\Delta\theta) = S(2\pi - \Delta\theta)$$

The growth of the bridge

We can foliate spacetime with **maximal codimension-one** slices **anchored** at the boundaries

$$\mathcal{C}_{V}(B) = \max_{\partial \Sigma = B} \frac{V(\Sigma)}{GL_{AdS}}$$

Complexity = Volume [D. Stanford and L. Susskind, 2014]

The ever growing bridge

The volume of a **2-dimensional surface** described by t(l), r(l) is

We can exploit reparameterization invariance to fix

$$\mathcal{L} = r^2$$
 $r'_{\pm} = \pm \sqrt{r^2 f_o(r) + P^2}, \quad t' = -\frac{P}{f_o(r)}$

The growth rate of the volume V at late times is [D. Carmi, S. Chapman, H. Marrochio, R. C. Myers, and S. Sugishita, 2017]:

$$\lim_{t_b \to \infty} \frac{dV}{dt_b} = 16\pi G L_{AdS}^2 M \qquad \qquad M = \frac{\mu}{8G L_{AdS}^2} \qquad \text{BH mass}$$

The bubble catalogue - reprise

A "Frankenstein" extremal surface

The **full extremal surface** is obtained by **gluing** along the bubble surface an AdS part attached to the boundary and a dS part

 P_o, P_i , and \overline{R} must be chosen so that the **full** surface has maximal volume!

$$P_i \frac{dT_i}{dR} + \frac{\xi_i(\bar{R})}{f_i(\bar{R})} = P_o \frac{dT_o}{dR} + \frac{\xi_o(\bar{R})}{f_o(\bar{R})}$$

Refraction-like law

$$\xi_{i,o}(\bar{R}) = \frac{dr}{dl} \bigg|_{wall_{i,o}} = \pm \sqrt{f_{i,o}(\bar{R}) \,\bar{R}^2 + P_{i,o}^2}$$

(R)

AdS holography prescription

It is natural to anchor the maximal surface at the AdS boundary:

1. The **AdS boundary time** is fixed as $t_b = t_R$

2. To avoid a curvature singularity on the maximal surface at r = 0 in dS, we impose $P_i = 0$

$$t_i' = -\frac{P_i}{f_i(r)} = 0$$

The surfaces in the dS portion are at **constant time**!

For **all kinds** of bubbles, the volume growth rate is:

$$\frac{1}{2\pi}\frac{dV}{dt_b} = P_o$$

Complexity of collapsing bubbles

Maximizing the volume

For a given t_b , how to recognize surfaces with **maximal** volume?

Complexity of expanding bubbles

Complexity of static bubbles

The static bubble can be realized as a limit:

Second prescription: hybrid holography?

A very large bubble ($0 < \mu < \mu_h$) contains a **whole static patch**

Hyperfast growth

As in pure dS! [E. Jørstad, R. C. Myers, and S.-M. Ruan, 2022]

Conclusions and outlook

- We have considered dS bubbles embedded into BTZ spacetime [B. Freivogel, V. E. Hubeny, A. Maloney, R. C. Myers, M. Rangamani, and S. Shenker, 2005]
- Holographic entanglement entropy (initial time): for large subregions is smaller than the case of BTZ without bubble. What about later time?

Where are the **extra** degrees of freedom of the **inflating** region?

The **two prescriptions** for holographic complexity suggest different interpretations:

- AdS holography: the volume is proportional to complexity of a mixed CFT state, obtained by tracing the thermofield double-like state over the dS degrees of freedom (no dS information)
- Hybrid holography: the volume is proportional to complexity of the pure thermofield doublelike state (dS expansion is detected)

Thank you for your attention!