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• In electrodynamics, the electric field is denoted by E for obvious reason.

But, the magnetic field is denoted by B or H instead of M. Why?



Physics: the History of Unification

– Originally (1861), Maxwell wrote his equations with neighboring nine alphabets,

B, C, D , E , F , G , H, I, J

lacking vector notation.

– It was Heaviside (1864), or SO(3), who reformulated them into modern four equations,

∇ · E = ρ , ∇× E = −
∂B
∂t

, ∇ · B = 0 , ∇× B = J +
∂E
∂t

– Minkowski (1908), or SO(1, 3), then made further simplification,

∂λFλµ = Jµ , ∂[λFµν] = 0

• Nonetheless, these simplifications are all rewriting of the same 8 equations in component.
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Physics: the History of Unification

– Similar simplification has been made for the gravitational sector in string theory.

The vanishings of the three β-functions on string worldsheet,

Rµν + 25µ(∂νφ)− 1
4 HµρσHνρσ = 0

1
2 e2φ5ρ

(
e−2φHρµν

)
= 0

R + 42φ− 4∂µφ∂µφ− 1
12 HλµνHλµν = 0

have been unified, thanks to O(D,D), into a single formula, w/ S. Rey, W. Rim, Y. Sakatani 2015

GAB = 0 .

which is the vacuum case of more general, Einstein Double Field Equation,

GAB = TAB

where A,B are O(D,D) vector indices. w/ S. Angus and K. Cho 2018

In contrast to electrodynamics, this simplification turns out to be more than just rewriting,

which I will explain.



What is the gravitational theory that string theory predicts?

– A conventional answer is General Relativity (GR), in view of gµν appearing in the

quantization of closed string. Needless to say, ever since the formulation of GR, Riemannian

geometry has been the mathematical paradigm for theoretical physics where gµν is privileged

to be the only fundamental variable that defines the concept of ‘spacetime’.

– However, gµν is only one segment of the closed string massless sector that includes two

additional fields: a two-form potential Bµν and a scalar dilaton φ . A better answer is

SSUGRA =

ˆ
dDx

√
−ge−2φ

(
R + 4∂µφ∂µφ− 1

12 HλµνHλµν
)

︸ ︷︷ ︸
closed string massless sector as gravity

+ Lmatter︸ ︷︷ ︸
other sectors as matter

This action secretly keeps O(D,D) symmetry which transforms the trio
{g,B, φ} to one another, and may suggest to regard the whole sector

as gravitational and also geometric.

– This idea has come true through the developments in Double Field
Theory (DFT) Siegel 1993; Hull-Zwiebach 2009 (c.f. Generalised Geometry à la

Hitchin-Gualtieri) which reformulated the above action in an O(D,D) man-

ifest way and further evolved into an autonomous gravitational theory.

Our answer: DFT = O(D,D) completion of GR .



Plan of the Talk

I. Review of the O(D,D)-symmetric differential geometry underlying the central formula,

GAB = TAB : EDFE

where A,B are O(D,D) vector indices running from 1 to D+D.

II. Two vacuum solutions to EDFE, TAB = 0:

– Traversable Wormhole for String but not for Particle 2412.04128 w/ H. Jang, H. Lee, & M. Kim

– Accelerating Open Universe as a realistic alternative to de Sitter

2308.07149 w/ H. Lee, L. Velasco-Sevilla, & L. Yin

I Essentially, the negative kinetic term of φ realises these solutions in the string frame.



DFT as Gravity of String Theory

– Its Autonomous Structure –



DFT = O(D,D) completion of GR

– GR is characterised by

Lξ , gµν , ∇λgµν = 0 ⇒ γλµν = 1
2 gλρ(∂µgρν + ∂νgµρ − ∂ρgµν) , Gµν = κTµν

– Dictated by O(D,D) Symmetry Principle, DFT has its own version of each item above.

– A priori, DFT should be formulated in terms of O(D,D) covariant fields, rather than {g,B, φ}.

DFT describes then not only Riemannian but also non-Riemannian geometries ( @ gµν ).

I DFT becomes a universal framework for (Riemannian) SUGRA as well as (exotic) non-relativistic

Newton–Cartan, ultra-relativistic Carroll gravities and fracton physics which are all non-Riemannian.

I DFT enlarges the concept of spacetime geometries, redefining the notion of spacetime singularity,

and provides novel string vacua.



Notation

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =


0 1

1 0



p, q, · · · Spin(1,D−1) vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin(1,D−1) spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1) vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1) spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

– DFT employs ‘doubled’ coordinates which the O(D,D) metric JAB splits into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) , ∂A = J AB∂B = (∂µ, ∂̃ν) .

– The existence of two separate local Lorentz symmetries, Spin(1,D−1)× Spin(D−1, 1),
indicates the twofold locally inertial frames of the closed-string left and right movers. Duff 1986



Doubled-yet-Gauged Coordinates & Generalised Lie Derivative

– All the functions in DFT {Φi ,Φj , ··} are required to satisfy section condition, ∂A∂
A = 0:

∂A∂
AΦi = 0 & ∂A∂

A (Φi Φj
)

= 0 =⇒ ∂AΦi∂
AΦj = 0 ,

which can be generically solved by setting ∂̃µ = 0 up to O(D,D) rotations⇒ choice of section.

– DFT-diffeomorphisms are then given by generalised Lie derivative: Siegel 1993

L̂ξTM1···Mn = ξN∂NTM1···Mn︸ ︷︷ ︸
transport

+ ωT ∂Nξ
NTM1···Mn︸ ︷︷ ︸

weight

+
n∑

i=1

(∂Mi ξN − ∂NξMi )︸ ︷︷ ︸
so(D,D) rotation

TM1···Mi−1
N

Mi+1···Mn ,

whose commutators are only closed under the section condition.

With ξM = (λµ, ζν), it unifies B-field gauge symmetry δB = dλ and ordinary Lie derivative Lζ .

– The section condition is mathematically equivalent to a certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where ∆M is said to be ‘derivative-index-valued’. JHP 2013

I Physics should be invariant under such a shift of the doubled coordinates, suggesting

The doubled coordinates are gauged by derivative-index-valued shifts, satisfying ∆M∂M = 0,

xM ∼ xM + ∆M (x) : Coordinate Gauge Symmetry

Each equivalence class or gauge orbit in RD+D corresponds to a single physical point.



Fundamental Fields: HMN , d

– DFT has its own dynamical metricHMN (“generalised metric”) satisfying two defining properties,

HMN = HNM , HM
KHN

LJKL = JMN

Combined with JMN =

 0 1

1 0

, it generates a pair of projectors (orthogonal and complete),

PMN = 1
2 (JMN +HMN ) , P̄MN = 1

2 (JMN −HMN ) ;
PL

M PM
N = PL

N , P̄L
M P̄M

N = P̄L
N

PL
M P̄M

N = 0 , PM
N + P̄M

N = δM
N

– Further, taking the ‘square root’ of each projector,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we obtain a pair of DFT-vielbeins for Spin(1,D−1)× Spin(D−1, 1),

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 .

Namely, JMN and HMN are simultaneously diagonalisable as diag(η, η̄) and diag(η,−η̄).

– The O(D,D) singlet dilaton d sets the DFT-integral measure e−2d (unit diffeomorphic weight).

We shall see ∃ various ways of parametrising the fundamental fields: Riemannian vs. non-Riemannian.



Christoffel & Spin Connections w/ Imtak Jeon & Kanghoon Lee 2010, 2011

– In GR, the Christoffel symbol is the unique metric-compatible connection, ∇λgµν = 0, which
satisfies either a torsionless condition, or an alternative condition that the metric is the only
ingredient to form the connection.

– Similarly, the DFT-Christoffel connection can be uniquely fixed,

ΓLMN = 2
(
P∂LPP̄

)
[MN]

+2
(

P̄[M
J P̄N]

K − P[M
J PN]

K
)
∂J PKL− 4

D−1

(
P̄L[M P̄N]

K + PL[M PN]
K
)(
∂K d + (P∂J PP̄)[JK ]

)
satisfying, in particular, the compatibility

∇LJMN = 0 , ∇LHMN = 0 , ∇Ld = − 1
2 e2d∇L

(
e−2d) = 0

where ∇L = ∂L + ΓL is defined by

∇LTM1···Mn := ∂LTM1···Mn − ωT ΓK
KLTM1···Mn +

n∑
i=1

ΓLMi
NTM1···Mi−1NMi+1···Mn .

– One can further obtain the twofold spin connections,

ΦMpq = V N
p∇M VNq , Φ̄Mp̄q̄ = V̄ N

p̄∇M V̄Nq̄

from the requirement that the ‘master’ covariant derivative

DM = ∂M + ΓM + ΦM + Φ̄M = ∇M + ΦM + Φ̄M

should be compatible with the DFT-vielbeins,

DM VNp = ∇M VNp + ΦMp
qVNq = 0 , DM V̄Np̄ = ∇M V̄Np̄ + Φ̄Mp̄

q̄V̄Nq̄ = 0 .



Curvature & (Semi-)covariance w/ Imtak Jeon & Kanghoon Lee 2010, 2011

– Semi-covariant Riemann curvature :

SKLMN = S[KL][MN] = SMNKL := 1
2

(
RKLMN + RMNKL − ΓJ

KLΓJMN
)
, S[KLM]N = 0 ,

where RABCD denotes the ordinary “field strength”,
RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC

E ΓBED − ΓBC
E ΓAED .

By construction, like in GR, it varies as ‘total derivative’:

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB =⇒ hence good for variational principle.

– Our formalism is ‘semi-covariant’, meaning

δξ
(
∇LTM1···Mn

)
= L̂ξ

(
∇LTM1···Mn

)
+
∑n

i=1 2(P+P̄)LMi
NEFG∂E∂F ξG TM1···Mi−1NMi+1···Mn

δξSKLMN = L̂ξSKLMN + 2∇[K
[
(P+P̄)L][MN]

EFG∂E∂F ξG
]

+ 2∇[M
[
(P+P̄)N][KL]

EFG∂E∂F ξG
]

δξΓCAB = L̂ξΓCAB + 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DξE ]

where PLMN
EFG = PL

E P[M
[F PN]

G] + 2
PK

K−1
PL[M PN]

[F PG]E and similarly P̄LMN
EFG is set with P̄M

N .

I The red-colored anomalies can be easily projected out to give fully covariant objects, e.g.

DpTq̄ = ∇LTM V L
pV̄ M

q̄ , Spq̄ = SL
MLNV M

pV̄ N
q̄ ( Ricci ) , S(0) = Spq

pq − Sp̄q̄
p̄q̄ ( scalar )

γpDpρ , Dp̄ρ ( Dirac ) , D±C= γpDpC±γ(D+1)Dp̄Cγ̄p̄ , (D±)2= 0 ⇒ F = D+C (bispinorial RR)



O(D,D) symmetric ‘minimal’ coupling

The pure DFT action is then given by e−2d S(0) and can further ‘minimally’ couple to ‘matter’:

– D = 10, Type II SDFT (full order 32 SUSY, pseudo action) w/ I. Jeon, K. Lee & Y. Suh 2012

Ltype II = e−2d
[

1
8 S(0) + 1

2 Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1
2 ρ̄γ

pDpρ− i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]
which unifies IIA and IIB SUGRAs as different solution sectors.

The full order SUSY, i.e. quartic order in fermions, has been recently verified by D. Butter 2022.

– D = 4 DFT minimally coupled to the Standard Model w/ K. Choi 2015 PRL

LSM = e−2d
[

1
16πGN

S(0) +
∑

A Tr(Fpq̄F pq̄)−HMN (DMφ)†DNφ − V (φ)
]

+
∑
ψ ψ̄γ

pDpψ +
∑
ψ′ ψ̄

′γ̄p̄Dp̄ψ
′ + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′

Conjecture: quarks and leptons are distinct kinds of spinors, one for Spin(1, 3) and the other for Spin(3, 1).

I Every single term in the above Lagrangians is completely covariant, w.r.t. O(D,D) rotations,

DFT-diffeomorphisms, and twofold local Lorentz symmetries.



Einstein Double Field Equation w/ S. Angus and K. Cho 2018

– Now we consider a general DFT action coupled to generic matter, say Υ’s,

Action =

ˆ
Σ

e−2d
[

1
2κS(0) + Lmatter

(
Υ,DM Υ

) ]
.

The variational principle,

δAction =

ˆ
Σ

e−2d
[

2V̄ Mq̄δVM
p( 1
κ

Spq̄ − Kpq̄)− δd( 1
κ

S(0) − T(0)) + δΥ
δLmatter

δΥ

]
leads us to define out of Lmatter,

Kpq̄ := 1
2

(
VMp

δLmatter
δV̄M

q̄ − V̄Mq̄
δLmatter
δVM

p

)
= −2VMpV̄Nq̄

δLmatter
δHMN

, T(0) := e2d ×
δ
(

e−2d Lmatter

)
δd

– Subsequently, the ‘General Covariance’,

0 =

ˆ
Σ

e−2d
[

1
κ
ξNDM

{
4V[M

pV̄N]
q̄(Spq̄ − κKpq̄)− 1

2JMN (S(0) − κT(0))
}

+ L̂ξΥ
δLmatter

δΥ

]
guides us to identify the Einstein curvature, w/ S. Rey, W. Rim, Y. Sakatani 2015

GMN := 4V[M
pV̄N]

q̄Spq̄ − 1
2JMNS(0) , ∇M GMN = 0 (off-shell)

and the Energy-Momentum tensor,

TMN := 4V[M
pV̄N]

q̄Kpq̄ − 1
2JMNT(0) , ∇M T MN = 0 (on-shell)

I Equating them, we obtain the Einstein equation of DFT, or EDFEs: GMN = κTMN



Question: Is DFT a mere reformulation of SUGRA in an O(D,D) manifest manner?

The answer would be (and had been) yes, if we assume

HMN =

 g−1 −g−1B

Bg−1 g − Bg−1B

 , e−2d =
√
|g|e−2φ

Giveon, Rabinovici, Veneziano ’89, Duff ’90

Upon this parametrisation, EDFE, GMN = TMN , reduces to

Rµν + 25µ(∂νφ)− 1
4 HµρσHνρσ = K(µν) ⇐ δgµν

1
2 e2φ5ρ

(
e−2φHρµν

)
= K[µν] ⇐ δBµν

R + 42φ− 4∂µφ∂µφ− 1
12 HλµνHλµν = T(0) ⇐ δd

And the ‘pure’ DFT action reducesˆ
dDx e−2d S(0) =

ˆ
dDx

√
−ge−2φ(R + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)
.

– However, DFT works perfectly fine, with any generalised metric that satisfies the defining
properties: HMN = HNM , HM

KHN
LJKL = JMN . And the above parametrisation is not the

most general solution to them. Hence the answer to the question is No.

– In fact, the most or perfectly symmetric vacua of DFT are given by

HMN = ±JMN =

 0 ±1

±1 0

 which do not admit any Riemannian interpretation.



Non-Riemannian Geometry

• First example w/ Kanghoon Lee 2013

• Non-Relativistic String w/ Sung Moon Ko, Charles Melby-Thompson, Rene Meyer 2015

• Classification w/ Kevin Morand 2017

• Moduli-free Kaluza–Klein reduction w/ Kyoungho Cho and Kevin Morand 2018

• -Dynamics through EDFE w/ Kyoungho Cho 2019

• Quantum Consistency on Worldsheet w/ Shigeki Sugimoto 2020 PRL

• ∞-dimensional Isometries w/ Chris Blair and Gerben Oling 2020

• Some Riemannian Singularities = Non-Riemannian Regularity

w/ Kevin Morand and Miok Park 2021 PRL

• Fracton Physics w/ Stephen Angus and Minkyoo Kim 2021



Classification of DFT geometries w/ K. Morand 2017

The most general parametrisations of the DFT-metric, HMN = HNM , HM
KHN

LJKL = JMN ,

can be classified by two non-negative integers, (n, n̄), 0 ≤ n+n̄ ≤ D :

HMN =

 Hµν −HµσBσλ + Yµi X i
λ − Ȳµı̄ X̄ ı̄λ

BκρHρν + X i
κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κBλ)ρYρi − 2X̄ ı̄(κBλ)ρȲρı̄



=

 1 0

B 1


 H Yi (X i )T − Ȳı̄(X̄ ı̄)T

X i (Yi )
T − X̄ ı̄(Ȳı̄)T K


 1 −B

0 1


where

Hµν = Hνµ , Kµν = Kνµ , Bµν = −Bνµ

HµνX i
ν = 0 = Hµν X̄ ı̄ν , KµνYνj = 0 = Kµν Ȳν̄ : i, j = 1, 2, · · · , n ; ı̄, ̄ = 1, 2, · · · , n̄

HµρKρν + Yµi X i
ν + Ȳµı̄ X̄ ı̄ν = δµν : completeness relation

I It follows that Yµi X j
µ= δi

j , Ȳµı̄ X̄ ̄µ= δı̄ ̄ , Yµi X̄ ̄µ = 0 = Ȳµı̄ X j
µ , etc.

I Obviously, only (0, 0) is Riemannian but all others are non-Riemannian.



Examples of Non-Riemannian Geometries, (n, n̄) 6= (0,0)

i) (1, 0) Newton–Cartan gravity, ds2 = −c2dt2 + dx2, lim
c→∞

g−1 is finite & degenerate

ii) (D−1, 0) ultra-relativistic Carroll gravity, dτ2 = dt2 − c−2dx2, lim
c→0

g−1 is finite & degenerate

iii) (1, 1) Stringy/torsional Newton–Cartan gravity, Gomis–Ooguri non-relativistic string theory
w/ Ko, Melby-Thompson and Meyer 2015; Blair 2019

iv) (D, 0) and (0,D) are the two perfectly symmetric vacua,H = ±J with the trivial coset O(D,D)
O(D,D)

.

Taken as an internal space, K-K reductions on them are moduli-free. w/ Cho and Morand 2018

“Riemannian spacetime emerges after SSB of O(D,D), identifying {g,B} as

Nambu–Goldstone boson moduli." Berman, Blair and Otsuki 2019

I EDFEs, GMN = TMN , govern all the dynamics of various non-Riemannian geometries.

One needs to insert the (n, n̄) parametrisations and organise the expressions. w/ K. Cho 2019

I Besides, a class of singular geometries known in GR/SUGRA can be identified as

regular (1, 1) non-Riemannian geometries of DFT. w/ K. Morand and M. Park 2021 PRL



Properties of Non-Riemannian Geometries

– The trace is given by HM
M = 2(n−n̄) which O(D,D) rotations cannot alter.

– One can identify the underlying coset O(D,D)
O(t+n,s+n)×O(s+n̄,t+n̄)

with dimensions D2 − (n − n̄)2.

– Analysing DFT Killing eqns, L̂ξHMN = 8P̄(M
[K PN)

L]∇K ξL = 0, one can address the notion

of non-Riemannian isometries. Constant non-Riemannian backgrounds turn out to admit

‘super-translational’, (i.e. infinitely many) isometries. Further, within SDFT, they imply

infinitely many Killing spinors or ‘super-supersymmetries’. w/ C. Blair and G. Oling 2020

– In fact, strings become chiral and anti-chiral over the n and n̄ non-Riemannian directions:

X i
µ ∂+xµ(τ, σ) = 0 , X̄ ı̄µ ∂−xµ(τ, σ) = 0

such that the central charges read

cL/R = D ± (n − n̄)− 26 (bosonic string) ; cL/R = D ± (n − n̄)− 10 (superstring)

Thus, necessarily we require n = n̄ and D = 26 or 10. w/ Shigeki Sugimoto 2020 PRL

– On the other hand, particles ‘freeze’ over the n + n̄ non-Riemannian directions:

X i
µ

dxµ(τ)
dτ = 0 = X̄ ı̄µ

dxµ(τ)
dτ .



Spherical Vacuum Solution to EDFE

Traversable wormhole for string, but not for particle

2412.04128 w/ Hun Jang, Hocheol Lee, and Minkyoo Kim



– The wormhole geometry we propose is a two-parameter family of solutions and is traceable to

the work (1994) by Burgess, Myers, and Quevedo who obtained more general

three-parameter family of solutions by performing SL(2,R) S-duality rotations

of a dilaton–metric solution in Einstein frame.

– The three-parameter solutions were later re-derived as the most general spherically

symmetric vacuum solutions to EDFE, by analogy with Schwarzschild geometry of GR.
w/ S. Ko and M. Suh 2016.

– The two-parameter family of solutions were further singled out as an example of

Riemann-wise singular but DFT-wise regular non-Riemannian geometry.
w/ K. Morand and M. Park 2021 PRL.

– Without further ado, let me spell the solution in a convenient coordinate system.



NS-NS Wormhole

ds2 =
−dt2 + dy2

F(y)
+R(y)2

(
dϑ2 + sin2ϑ dϕ2

)
,

H(3) = h sinϑ dt ∧ dϑ ∧ dϕ ,

e2φ(y) =
1

|F(y)|

where

F(y) =
(y − b−)(y − b+)

y2 + 1
4 h2

, R(y) =
√

y2 + 1
4 h2 ≥ 1

2 |h| .

– The geometry has two free parameters, b 6= 0 and electric H-flux h, in terms of which we set

γ± =
1±

√
1− h2/b2

2
, b+ = −bγ+ , b− = bγ− .

– For the solution to be real, we require h2 ≤ b2.

– While R(y) = R(−y), F(y) is not parity symmetric, except the case of saturation, h2 = b2.

Therefore, in general one cannot identify y with −y to perform a Z2-orbifolding.

We should then set the range of the y -coordinate to be all real numbers, y ∈ R.



Wormhole Metric

ds2 =
−dt2 + dy2

F(y)
+R(y)2

(
dϑ2 + sin2ϑ dϕ2

)
,


F(y) =

(y − b−)(y − b+)

y2 + 1
4 h2

R(y) =
√

y2 + 1
4 h2 ≥ 1

2 |h| .

– The geometry consists of two separate, asymptotically flat spacetime letting F(y)→ 1,

one by y →∞ and the other by y → −∞, which are to be connected by a wormhole.

– The minimum of the areal radius is at y = 0 which we identify as the throat of the wormhole.

– With nontrivial H-flux, h 6= 0, a flare-out condition is satisfied in terms of the y -coordinate,

dR
dy

∣∣∣
y=0

= 0 , d2R
dy2

∣∣∣∣
y=0

= 2
|h| > 0 .



Riemann-wise Singular but DFT-wise Regular Non-Riemannian
w/ Kevin Morand and Miok Park 2021 PRL

– The curvatures defined in Riemannian geometry are singular at the points of y = b±, such as

R = −
2b2(y2 + 1

4 h2)2 + 3h2(y − b+)2(y − b−)2

2(y − b+)(y − b−)(y2 + 1
4 h2)3

.

– However, the geometry sets the GAB hence DFT-curvatures, S(0) & (PSP̄)AB , all trivial.

– In fact, by choosing the B-field appropriately to include a pure-gauge term,

B(2) = h cosϑ dt ∧ dϕ+
dt ∧ dy
F(y)

, dB(2) = H(3) ,

both HAB and e−2d can be made everywhere non-singular, such as e−2d = R(y)2 sinϑ.

As the B-field gauge transformation is a part of doubled diffeomorphisms,

the curvature singularity characterised within Riemannian geometry is to be identified

as a coordinate singularity within DFT.

– From the perspective of DFT, the geometry is regular everywhere: it is Riemannian away from

y = b± and non-Riemannian at the points.

– It is of the same (1, 1) type of non-Riemannian geometry as to the non-relativistic string.



Null Convergence Condition (NCC)

– In terms of (ordinary) Ricci curvature, the NCC stipulates Rµνkµkν ≥ 0 for ∀ null vector kµ.

– Any vacuum solution to EDFE decomposes the Ricci curvature into dilaton and H-flux terms,

Rµν = −25µ(∂νφ) + 1
4 HµρσHνρσ .

– Our wormhole geometry gives, with a null radial vector in a simple form kµ = (1, 1, 0, 0),

Rµν kµkν = − 4(b++b−)y(y2− 1
2 h2)+5h2(y2− 1

20 h2)

2R(y)4(y−b+)(y−b−)
,

−25µ(∂νφ) kµkν = − 2(b++b−)y(y2− 3
4 h2)+3h2(y2− 1

12 h2)

R(y)4(y−b+)(y−b−)
,

1
4 HµρσHνρσ kµkν = h2

2R(y)4 > 0 .

This shows that the H-flux always respects the NCC but the dilaton exhibiting the negative

kinetic term in the string framed action does not. The NCC can be broken.

– Nonetheless, from the DFT perspective, {g,B, φ} are all gravitational fields which

constitute the LHS of the EDFE, i.e. GAB .

The matter part is on the RHS, i.e. TAB , which has its own energy conditions.

There is no need to care about the energy condition for the vacuum in DFT, including

the present wormhole solution.



Asymmetric ‘Wine-Glass’ Wormhole embedded in Ambient space

– Embedding of the wormhole into an ambient spacetime:

dŝ2 =
−dt2

F
± dz2 + dR2 +R2

(
dϑ2 + sin2ϑ dϕ2

)
,

by R(y) =
√

y2 + 1
4 h2 and z(y) satisfying

dz
dy

=

√
±
[

1
F −

(
dR
dy

)2
]

=

√
±
[
−b
√

1−h2/b2y3+ 3
4 h2y2+ 1

16 h4

(y−b+)(y−b−)(y2+ 1
4 h2)

]
where the sign must be chosen to ensure the realness of the
square roots: the embedding is inevitably piecewise.

i) For b2 > h2 > 0 and large R as y → ±∞,

z ∼ ±2(b2 − h2)1/4
√
R

This supplements the throat region depicted on the RHS.

ii) When b2 = h2 > 0, we get instead z ∼ ±
√

3
2 |b| lnR .

Strings either traversing or non-traversing
are colored in pink or red respectively. The
Riemann-wise singular but DFT-wise
regular non-Riemannian points at y = b±
are colored in orange.



Traversable by String, but Not by Particle

– The massless particles’ null geodesics reduce, with conserved energy E 6= 0 and angular

momentum Lϕ to ṫ = EF(y), ϕ̇ = LϕR(y)−2, and pivotally for the y -coordinate,

0 = ẏ2 + V (y) , V (y) =
[
−E2F(y) + L2

ϕ/R(y)2
]
F(y)

w/ K. Morand and M. Park 2021 PRL.

i) When Lϕ 6= 0, the effective potential V (y)

features two positive peak, such that a massless

particle cannot traverse y = b+ nor y = b−,

as depicted on the RHS.

ii) If Lϕ = 0, it takes infinite amount of affine

parameter, λ, to reach y = b±, as
ˆ

dλ =

ˆ
dy

EF(y)

is logarithmically divergent.

Effective potential V (y) for b > 0 and Lϕ 6= 0.

Geodesics are confined in each of the three regions

(red colored ) divided by the points of y = b±.

⇒ Each of the three regions divided by y = b+ and y = b− is geodesically complete and

the wormhole is non-traversable by particles.



Traversable by String, but Not by Particle

– We now turn to strings,

1
2πα′

ˆ
d2σ − 1

2

√
−hhαβ∂αxµ∂βxνgµν + 1

2 ε
ab∂αxµ∂βxνBµν .

With σ± = σ ± τ and conformal gauge, the propagation of a string is dictated by

∂+∂−xµ +
(

Γµρσ + 1
2 Hµρσ

)
∂+xρ∂−xσ = 0 ,

subject to Virasoro constraints,

∂+xµ∂+xνgµν = 0 , ∂−xµ∂−xνgµν = 0 .

– As mentioned earlier, if the string ever approaches the non-Riemannian points of y = b±,

the string must be chiral or anti-chiral there.

– Rather than pursuing general solutions, we focus on the radial propagation of the string,

by letting the two angular variables, ϑ, ϕ constant, and present solutions:

i) non-traversing and ii) traversing.

– With constant ϑ and ϕ, the Virasoro constraints imply

either i) ∂+y∂−y = ∂+t∂−t (non-traversing) or ii) ∂+y∂−y = −∂+t∂−t (traversing).



Traversable by String, but Not by Particle

i) When ∂+y∂−y = ∂+t∂−t , our non-traversing solution assumes either y = t (forward-moving)

or y = −t (backward-moving). All the equations of the string dynamics boil down to

∂+∂−G(y) = 0

where

G(y) =

ˆ
dy
F(y)

= y +

(
b2
− + h2/4

b

)
ln |y − b−| −

(
b2

+ + h2/4
b

)
ln |y − b+|

Naturally, G(y) decomposes into left- and right-movers,

G(y) = y0 + 2α′p τ + f+(σ+) + f−(σ−)

where for a closed string, f±(σ±) are arbitrary periodic functions, leading to vibrational mode

expansions, while an open string needs to meet Neumann or Dirichlet boundary conditions.

– In any case, G(y) determines y = ±t completely, at least locally.

– In particular, far away from y = b±, we have G(y) ' y and thus, not surprisingly, the string
propagates like a free string on a flat background.

– However, such a string cannot approach nor cross the points of y = b± with finite amount of

τ (logarithmic divergence). Only in the limit, τ → ±∞, the string may arrive at y = b±.

– These are all consistent with the non-traversing particle geodesics.

– In fact, from the target spacetime perspective, the string setting y = ±t appears as if a point

particle, without any spatial extension.



Traversable by String, but Not by Particle

ii) When ∂+y∂−y = −∂+t∂−t , our traversing closed-string solution is given by

y = f+(σ+) + f−(σ−) , t = f+(σ+)− f−(σ−) ,

such that y + t is chiral and y − t is anti-chiral, like the Gomis–Ooguri non-relativistic string.

– If the amplitudes of f±, are large enough, this chiral string traverses the wormhole.

– One such example forms an ellipsoid in the target spacetime encompassing the wormhole, f+(σ+) = b sinσ+

f−(σ−) = b sinσ−

 ,
 y = 2b cos τ sinσ

t = 2b sin τ cosσ

 ,
(

t
cosσ

)2
+
(

y
sinσ

)2
= 4b2 .

– Although this traversing solution seems ignorant about the details of the wormhole geometry,

it is H-flux that enables the chiral string to traverse: ∂+∂−xµ +
(

Γµρσ + 1
2 Hµρσ

)
∂+xρ∂−xσ = 0.

– The periodic B.C. lets the traversing closed string localised not only in space but also in time.

– The O(D,D)-symmetric volume of the middle throat region is independent of the H-flux:
ˆ

Σt

e−2d =

ˆ b−

b+

dy
ˆ π

0
dϑ
ˆ 2π

0
dϕ R(y)2 sinϑ =

4π
3

b3 .

Given that the throat has the minimal area 4πR(0)2 = πh2, the (averaged) height of the

throat region is, roughly speaking, inversely proportional to the H-flux squared, ∝ b3/3h2.

It remains to be seen what would be the holographic interpretation, if any. Raamsdonk 2010.



Cosmological Vacuum Solution to EDFE

Late-Time Cosmology without Dark Sector

but with Closed String Massless Sector

2308.07149 w/ Hocheol Lee, Liliana Velasco-Sevilla, and Lu Yin



Cosmological Exact Vacuum

– In GR, de Sitter is the simplest cosmological solution: ΩΛ = 0.73 for ΛCDM.

Yet, the Hubble tension is getting worse by James Webb telescope: 67 vs. 73 km/s/Mpc.

Besides, there is swampland no-go argument for the existence of de Sitter. Vafa et al.

– What would be the cosmological vacuum solution to EDFE?

The answer is traceable to the work (1994) by Copeland, Lahiri, and Wands.

Here we elaborate their solution further to feature three free parameters,{
H0, h, l ≡ 1/

√
−k
}

as for an open Universe which turns out to fit observational data.

Dilaton φ which does not run away because k < 0,

e2φ(η) =
1−
√

1− 1
12 (hl sinh ζ)2

2

(
tanh

(
η
l + ζ2

)
tanh ζ2

)√3

+
1+
√

1− 1
12 (hl sinh ζ)2

2

(
tanh

(
η
l + ζ2

)
tanh ζ2

)−√3

Magnetic H-flux and FLRW metric (homogeneous & isotropic),

H(3) = h r2 sinϑ√
1+r2/l2

dr ∧ dϑ ∧ dϕ , ds2 = a2(η)
[
−dη2+ dr2

1+r2/l2
+r2(dϑ2+ sin2ϑdϕ2)]

with the scale factor and the Hubble constant,

a2(η) = e2φ(η) sinh (2η/l + ζ)

sinh ζ
, H0 =

1
2l sinh ζ

[
2 cosh ζ + σ

√
12− (hl sinh ζ)2

]
.



Bayesian Inference of Observational Data

– Type Ia Supernovae by Pantheon+: Distance Modulus µ(z) & Luminosity Distance dL(z),

µ(z) = 5 Log10

[
dL(z)

10 pc

]
, dL(z) =

1 + z
√
−k

sinh

[√
−k
ˆ z

0

dz′

H(z′)

]

⇒ 1583 data points over 0.01 ≤ z ≤ 2.26 Riess et al. 2021

– Quasar Absorption Spectrum: Temporal Variation of the Fine Structure Constant,

e−2φ(t)

α
FµνFµν =

1
αeff .(t)

FµνFµν

⇒ 199 data points over 0.22 ≤ z ≤ 7.06

King et al. 2012; Wilczynska et al. 2015 & 2020; Martins et al. 2017

– We perform analyses of Bayesian Inference (BI) against these observational data.

We use Markov Chain Monte Carlo (MCMC) ensemble sampler called ‘emcee’.

With 100 walkers, we run the samplers on a supercomputer (KiSTi ) for 106 steps.



Two Parameter Fitting by the Exact Vacuum (trivial H-flux)
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H0 = 71.29 ± 0.12
k = 1 + (6 ± 2)×10 7

– BI: very well converged, Ωk = 1/(lH0)2

– Distance Modulus µ : Complete agreement

with the type Ia supernova data.

– Suppressed time-evolution of e2φ or

the fine-structure constant: Consistency

with the quasar data.

∗ Admirable agreement, without DE or DM.



Extrapolations to Future and Past

– The exact vacuum solution predicts that, at future infinity the dilaton converges to constant,

and the Universe expands forever as a(η) ∝ eη/l , with vanishing H such that

lim
η→∞

Ωk = 1

which agrees with our BI fitting. Thus, there is No Coincidence Problem in our scenario.

– Extrapolated to the past, the Universe bounces without big bang about 13.72 gigayears ago

which is intriguingly close to the estimated “age” of the flat Universe in ΛCDM.



Conclusion

– We have proposed a Lorentzian wormhole that is traversable by strings but not by particles.

– This wormhole is a vacuum solution to EDFE: GAB = 0.

– In the string frame, φ exhibits a negative kinetic term, enabling the existence of the wormhole.

– Point-particle geodesics are complete within each region but non-traversable across regions.

– Strings perceive the geometry differently, allowing a chiral string to traverse freely.

? The cosmological vacuum agrees admirably well with the supernova and quasar data.

? The only requirements are an open Universe (k = −1/l2 < 0) and a string frame.

? We estimate the Hubble constant as H0 ' 71.2± 0.2 km/s/Mpc, and

the spatial curvature length scale as l = 1/
√
−k ' 1/H0 ' 4.2 Gpc.

? It remains to be seen whether the early Universe, or CMB, is also consistent with DFT or not.



Conclusion

– We have proposed a Lorentzian wormhole that is traversable by strings but not by particles.

– This wormhole is a vacuum solution to EDFE: GAB = 0.

– In the string frame, φ exhibits a negative kinetic term, enabling the existence of the wormhole.

– Point-particle geodesics are complete within each region but non-traversable across regions.

– Strings perceive the geometry differently, allowing a chiral string to traverse freely.

? The cosmological vacuum agrees admirably well with the supernova and quasar data.

? The only requirements are an open Universe (k = −1/l2 < 0) and a string frame.

? We estimate the Hubble constant as H0 ' 71.2± 0.2 km/s/Mpc, and

the spatial curvature length scale as l = 1/
√
−k ' 1/H0 ' 4.2 Gpc.

? It remains to be seen whether the early Universe, or CMB, is also consistent with DFT or not.

Cheers!



APPENDIX



Fracton Physics on non-Riemannian backgrounds
w/ Minkyoo Kim and Angus 2022

– ‘Fracton Physics’ is naturally realised on non-Riemannian backgrounds:

• Particle freezes with vanishing velocities → Fracton’s immobility

• Infinitely many isometries and hence Noether charges → Fracton’s large degeneracy

– Easy to produce fracton models, e.g. doubled YM on non-Riemannian backgrounds:

Tr
(

PAC P̄BDFABFCD

) ∣∣∣
(n,n̄)

= Tr


− 1

4 (fab+i[ϕa, ϕb])(f ab+i[ϕa, ϕb])

− 1
4 uabuab − f−ai D−aϕi + f +

aı̄D
+aϕı̄

−2Diϕ
ı̄Dı̄ϕi − 2ifi ı̄[ϕi , ϕı̄]


which contains a symmetric strain tensor

uab = Daϕb + Dbϕa

and features infinitely many multi-pole conservations. Note the decomposition, µ = a, i, ı̄.



Riemannian Singularity? or Non-Riemannian Regularity!
w/ Kevin Morand and Miok Park 2021 PRL

– A class of known “singular” geometries in SUGRA assumes an ansatz: with xµ = (t , y , z i ),

ds2 = 1
F (x)

(
−dt2 + dy2)+ Gij (x)dz i dz j

B(2) = 1
F (x)

dt ∧ dy + 1
2 βµν(x)dxµ ∧ dxν

e−2φ = F (x)Ψ(x)

where Gij , βµν and Ψ are all regular.

– They solve the EOMs ofˆ
dDx

√
−ge−2φ

(
R + 4∂µφ∂µφ− 1

12 HλµνHλµν − 2Λ
)

or equivalently EDFEs,
GMN = −ΛJMN .

– Examples include
• D = 10 black 5-brane á la Horowitz-Strominger (Λ = 0);
• D = 4 spherical solution á la Burges-Meyers-Quevedo (Λ = 0);
• D = 2 black hole á la Witten (Λ 6= 0).

– When F = 0, the ansatz features coordinate singularity and further curvature singularity,

R →∞ , RµνρσRµνρσ →∞ as F → 0.

– However, DFT-curvatures should be all finite (if not vanishing for Λ = 0).



– Substitution into the DFT-dilaton and DFT-metric removes the coordinate singularity:

e−2d =
√
−ge−2φ = Ψ

√
G , HAB =

 g−1 −g−1B

Bg−1 g − Bg−1B

 =

 1 0

β 1

 H̊
1 −β

0 1


where no negative power of F appears:

H̊AB =



−Fσ3 0 σ1 0

0 G−1 0 0

σ1 0 0 0

0 0 0 G



– In fact, it corresponds to (1, 1) non-Riemannian geometry when F → 0.

– In the case of D = 2, the B-field is a pure gauge hence removable by DFT-diffeomorphisms.

I The curvature singularity in GR becomes, at worst, a coordinate singularity in DFT.



– Depending on the choice of the framework, i.e. Riemannian GR vs. non-Riemannian DFT,

the backgrounds appear either singular or regular.

– To determine if the singularity is physical or not, we have examined the geodesic motions.

• In all the examples, the geodesics turn out to be complete.

• Further, the tidal force of geodesic deviation is all finite:

D2ξµ

Dλ2
= Rµνρσ ẋν ẋρξ̇σ , gµν

D2ξµ

Dλ2

D2ξν

Dλ2
<< ∞ .

– In fact, approaching the “singular” points of F = 0, particle freezes:

ṫ → 0 & ẏ → 0 as F → 0

and string becomes chiral/anti-chiral: with y± = y ± t ,

∂−y+ → 0 & ∂+y− → 0 as F → 0 ,

which are expected features from the doubled-yet-gauged particle and string actions

on generic non-Riemannian backgrounds.



Solar System Test: D = 4
Post-Newtonian Feasibility of the Closed String Massless Sector

2202.07413 w/ Kang-Sin Choi PRL

GAB = TAB

⇓ Riemannian Reduction

Rµν + 25µ(∂νφ)− 1
4 HµρσHνρσ = K(µν)

1
2 e2φ5ρ

(
e−2φHρµν

)
= K[µν]

R + 42φ− 4∂µφ∂µφ− 1
12 HλµνHλµν = T(0)



Parametrised Post Newtonian (PPN) formalism

– Two dimensionless PPN parameters βPPN , γPPN à la Eddington-Robertson-Schiff are defined

in an asymptotically flat isotropic coordinate system: with r =
√

x i x jδij ,

ds2 = −
(

1−
2MGN

r
+

2βPPN (MGN )2

r2
+ · · ·

)
dt2 +

(
1 +

2γPPNMGN

r
+ · · ·

)
dx i dx jδij

• Observational values Will 2014

– Shapiro Time Delay:

γPPN − 1 = (2.1± 2.3)× 10−5

– Perihelion shifts of Mercury:

βPPN − 1 = (−4.1± 7.8)× 10−5

– Earth Gravity:

4βPPN − γPPN − 3 = (4.44± 4.5)× 10−4

– Galactic size scale: γPPN = 0.98± 0.07



GR predicts βPPN = γPPN = 1

– In GR, the geometry of a spherical object, or “star”, is in general

ds2 = −e−2∆(r)

(
1−

2GNM(r)

r

)
dt2 +

dr2

1− 2GN M(r)
r

+ r2dΩ2 ,

where r denotes areal radius and

M(r) := −
ˆ r

0
dr ′ 4πr ′2 Tt

t (r ′) , ∆(r) := 4πGN

ˆ ∞
r

dr ′
{

Tr
r (r ′)− Tt

t (r ′)
}

r ′

1− 2GN M(r ′)
r ′

.

– Outside the star r > r? (star radius), Tµν = 0 hence ∆(r) = 0. The outer geometry is given
by Schwarzschild metric having the only one parameter M = M(r?) : Birkhoff’s theorem

– Mapped to the isotropic coordinate system, one gets rather exactly βPPN = γPPN = 1.

This has been viewed as the “success” of GR.



Stringy Spherical Vacuum Burgess-Myers-Quevedo 1994

– The spherical vacuum solution to GAB = 0 in DFT has three “free” parameters {a, b, h},

e2φ = γ+

(
4r−
√

a2+b2

4r+
√

a2+b2

) 2b√
a2+b2

+ γ−

(
4r+
√

a2+b2

4r−
√

a2+b2

) 2b√
a2+b2

,

H(3) = h dt ∧ dϕ ∧ d cosϑ , ds2 = gtt (r) dt2 + grr (r)
[
dr2 + r2 (dϑ2 + sin2 ϑdϕ2)] ,

where γ± = 1
2

(
1±

√
1− h2/b2

)
, gtt (r) = −e2φ(r)

(
4r−
√

a2+b2

4r+
√

a2+b2

) 2a√
a2+b2 and

grr (r) = e2φ(r)

(
4r+
√

a2+b2

4r−
√

a2+b2

) 2a√
a2+b2

(
1− a2+b2

16r2

)2
.

– One can read off the mass and the two PPN parameters,

MGN = 1
2

(
a + b

√
1− h2/b2

)
, (βPPN−1)(MGN )2 = h2

4 , (γPPN−1)MGN = −b
√

1− h2

b2 ,

and further take {MGN , βPPN , γPPN} as alternative three parameters, such that

φ ' (γPPN−1)MGN
2r + (βPPN−1)(MGN )2

r2 , H(3) = ±2
√
βPPN−1 MGN dt ∧ dϕ ∧ d cosϑ

Namely, the deviations γPPN−1 and
√
βPPN−1 correspond to the dilaton and H-flux charges.



Stringy Star has βPPN = 1 due to weak energy condition:

– In a similar fashion to GR, the vacuum solution in the previous page can be identified as the
outer geometry of a stringy star (non-singular), while it becomes possible to relate the three
parameters to the stress-energy tensor of the star: [Angus-Cho-JHP 2018]

MGN =
1

4π

ˆ
d3x e−2d

(
−Kt

t − HtϑϕH tϑϕ
)
,

√
βPPN−1MGN =

∣∣∣∣∣ K(tr)grr (e−2d/sinϑ)

2
´ r?

r dr ′(e−2d K [ϑϕ])

∣∣∣∣∣ ,
(γPPN−1)MGN =

1
4π

ˆ
d3x e−2d(Kµµ−T(0)+

1
6 HλµνHλµν

)
– Inside the star, while the magnetic flux can be nontrivial, the electric H-flux is persistently of

the same rigid form as outside:

H rϑϕ = −2e2d
ˆ r?

r
dr ′ e−2d K [ϑϕ] , Htϑϕ = h sinϑ .

– If h 6= 0, the electric H-flux contribution to the mass MGN diverges at r = 0 ,

1
4π

ˆ
d3x e−2d

(
−HtϑϕH tϑϕ

)
= h2

ˆ ∞
0

dr e−2φ
√
−gtt grr r2

∼ h2
ˆ ∞

0

dr
r2
→ ∞

In order to have the mass finite, the energy density −Kt
t should be negative. This violates

weak energy condition. Thus, we conclude h = 0 = Htϑϕ and hence βPPN = 1.



PPN parameter γPPN is an equation-of-state parameter:

– With the vanishing electric H-flux (h = 0), the volume integrals of the mass and γPPN are now
all restricted to the star’s interior,

MGN =
1

4π

ˆ
star
d3x e−2d

(
−Kt

t
)
, γPPN = 1 +

ˆ
star
d3x e−2d(Kµµ − T(0) + HrϑϕH rϑϕ)

ˆ
star
d3x e−2d (−Kt

t )

where the magnetic H-flux is set by K [ϑϕ].

– The PPN parameter γPPN is then a sum of (volume-averaged) equation-of-state parameters,

γPPN = 3wK − wT + δH−flux

where we let

wK =

ˆ
star
d3x e−2d 1

3 Ki
i

ˆ
star
d3x e−2d (−Kt

t )
, wT =

ˆ
star
d3x e−2d T(0)ˆ

star
d3x e−2d (−Kt

t )
, δH−flux =

16π

ˆ r?

0
dr r2e2φ

√
−g3

rr/gtt

(ˆ r?

r
dr ′ e−2d K [ϑϕ]

)2

ˆ
star
d3x e−2d (−Kt

t )

– As δH−flux is suppressed by GN , the experimental bound implies

|γPPN − 1| ' |3wK − wT − 1| =

∣∣∣∣∣∣∣∣
ˆ

SUN
d3x e−2d(Kµµ − T(0)

)
ˆ

SUN
d3x e−2d (−Kt t )

∣∣∣∣∣∣∣∣ . 10−5



Failure or NOT? ⇒ the choice of right degrees-of-freedom Weinberg

– If a star were modeled as an ideal gas of particles, we have wT = δH−flux = 0 and simply

γPPN = 3〈p/ρ〉 ' 〈v2〉 .

To be consistent with the observation, the average speed v should be close to 1= c, meaning
that the constituting particles should be ultrarelativistic rather than being “pressureless dusts”.

– The pressure outside an atom may be negligible, but this is also true for the energy density.

Both ρ and p should be confined inside baryons.

Recent experiment reveals ρ ∼ p inside proton. Burkert-Elouadrhiri-Girod 2018 Nature

– Instead, chiral effective theory of nuclear physics,

Seff . = −
ˆ

d4x e−2d gµν∂µΦI∂νΦJGIJ (Φ)

sets Kµµ = T(0), K [ϑϕ] = 0, and thus rather precisely γPPN = 1.

– Applied to QCD, γPPN − 1 essentially amounts to the gluon and quark condensates,

γPPN − 1 ' 1
4πMGN

ˆ
star
d3x

[
1
4 e−2d Tr(FµνFµν)− 1

2 mψ̄ψ
]

=

ˆ
star
d3x

[
e−2d Tr(B2 − E2)−mψ̄ψ

]
ˆ

star
d3x

[
e−2d Tr(E2) + iψ̄γt Dtψ

]
which may vanish, as suggested by some empirical measurements Barate et al. 1998 Phys. Rept.

and theoretical ‘pseudo-conformal’ scenarios Del Debbio-Zwicky, Hyun Kyu Lee, Mannque Rho 2022.

The electric and magnetic fields may cancel each other, while the quarks get negligible.



Solar System Test: Gravitational Probe into the Inside of Hadrons

– In summary, DFT sets βPPN = 1 and lets γPPN be the equation-of-state parameters.

– Rather than ruling out the theory, applied to baryons’ interior where the energy and
pressure are both confined, the apparently universal observations γPPN ' 1 including
the Sun and the Earth may signify pseud-conformal equation of state inside baryons,

E = mc2 + 1
2 mv2 + · · · =⇒ ρ = ρintrinsic + ρthermal

ρ ' 3p =⇒ p = pintrinsic + pthermal where pintrinsic ' 1
3ρintrinsic 6= 0 .

An open problem in Nuclear Physics.


