Recent Advances in Field Theory for Nuclear Theory

Yoshimasa Hidaka (YITP)

From Last lecture by former YITP director

He is interested in

1.格子QCD(HALQCD)

2. (主にハミルトン形式を用いた)量子論

Quantum theory of Hamilton formalism

3. AdS/CFT

4. 一般相対性理論 General relativity

One of recent developments in nuclear physics

= Generalized global symmetries

Hamiltonian Lattice gauge theory

from the viewpoint of Generalized global symmetries

Summary of this talk

Hamiltonian Lattice gauge theory

Topological quantum field theory with defects

Hilbert space of physical lattice gauge theory

n plaquettes lattice system

Hilbert space of topological quantum field theory with defects

(n+1) defects on S^2

Advantage: Topological calculus can be used Dual theory can be taken -It will help us to understand confinement mechanism • Maybe useful for Fault Tolerant quantum computing of gauge theory - surface code = \mathbb{Z}_2 gauge theory with defects

• Formalism - Kogut-Susskind Hamiltonian formalism

•TQFT with defects as gauge theory

Summary

Outine

Kogut-Susskind Hamiltonian formalism Kogut, Susskind ('75)

SU(N) gauge theory (Temporal gauge $A_0 = 0$) $[A_n^i(x), E_{mj}(x')] = i\delta_{nm}\delta_j^i\delta(x - x')$ **Commutation relation Electric field** Gauge field **Hamiltonian** $H = \int d^3x \left(\frac{g^2}{2}E^2(x) + \frac{1}{2g^2}B^2(x)\right)$

Magnetic field $B_l^i = \frac{1}{2} \epsilon_{lnm} (\partial_m A_n^i - \partial_m A_n^i + f_{jk}^i A_m^j A_n^k)$

Gauss law constraint $(D \cdot E)^i |\Psi_{phys}\rangle = 0$

Time is continuous, space is discretized

 $L_i(e)$ and $R_i(e)$ are not independent $[U_{adj}(e)]_{i}^{j}L_{j}(e) = R_{i}(e) = R_{i}^{2}(e) = L_{i}^{2}(e) = E_{i}^{2}(e)$

Kogut-Susskind Hamiltonian formalism Kogut, Susskind, Phys. Rev. D 11, 395 (1975)

> $e^{i \int A} \rightarrow U(e)$:Link variable $\in SU(N)$ on edge e $L_i(e), R_i(e)$: Left and right electric fields \in su(N)

Commutation relation

$[A_n^i(x), E_{mj}(x')]$ = $i\delta_{nm}\delta_j^i\delta(x - x')$

Gauss law constraint $(D \cdot E)_i | \Psi_{phys} \rangle = 0$ $G_i(v) | \Psi_{\text{phys}} \rangle = 0 \quad G_i(v) = \left(\sum_{e \in E | s(e) = v} R_i(e) - \sum_{e \in E | t(e) = v} L_i(e) \right)$

E:set of edges, s,t: source and target functions

 $[R_i(e), U(e')] = U(e)T_i\delta_{e.e'}$ $[L_i(e), U(e')] = T_i U(e) \delta_{e,e'}$ $[L_i(e), L_j(e')] = -if_{ij}^k L_k(e)\delta_{e,e'}$ $[R_i(e), R_j(e')] = if_{ij}^k R_k(e)\delta_{e,e'}$

$e \in E$:set of edges

$H = J\sum (E(e))^2 - \frac{K}{2}\sum (\operatorname{tr} U(f) + \operatorname{tr} U^{\dagger}(f))$ f∈F :set of faces

$U_{e_2} U(f) := U(e_4)U(e_3)U(e_2)U(e_1)$

Two types of bases:

G basis: Eigenstates of Wilson lines $\begin{bmatrix} U_a \end{bmatrix}_n^m |g\rangle = \begin{bmatrix} \rho_a \end{bmatrix}_n^m (g) |g\rangle \qquad g \in SU(2)$ Wilson line with Rep *a* representation matrix

Rep basis: Eigenstates of Electric fields (for SU(2)) $R_i^2(e) | j, m, n \rangle = C_2(j) | j, m, n \rangle$ $\stackrel{m \ j \ n}{}$ Casimir $C_2(j) = j(j+1)$ $| j, m, n \rangle$ $R_3(e) | j, m, n \rangle = n | j, m, n \rangle$ $| j, m, n \rangle$

A state can be generated by Wilson line

 $\sqrt{d_a} [U_a]_{n_a}^{m_a} | 0,0,0 \rangle = | j_a, m_a, n_a \rangle$

 $d_a = 2j_a + 1$ Quantum dimension

 Graphical
 $a \leftrightarrow \sqrt{d_a} [U_a]_{n_a}^{m_a} \leftrightarrow |j_a, m_a, n_a\rangle$

 representation:
 $a \leftrightarrow \sqrt{d_a} [U_a]_{n_a}^{m_a} \leftrightarrow |j_a, m_a, n_a\rangle$

 operator
 state

Physical state: Spin network Gauss law constraint: SU(2) invariant of each vertex

 $\left(L_{i}(c) - R_{i}(a) - R_{i}(b)\right) |\Psi_{\text{phys}}\rangle = 0$

Physical state: spin network with three vertices Angular momentum labels on the edges At each vertex the labels satisfy the triangle inequality

 $c \longrightarrow \sum_{n_a, n_b, m_c} \frac{1}{\sqrt{d_c}} \langle j_a n_a \, j_b n_b \, | j_c m_c \rangle \, | j_a, m_a, n_a \rangle \, | j_b, m_b, n_b \rangle \, | j_c, m_c, n_c \rangle$ $Clebsch-Gordan \ coefficients$

If the composition rules of the Wilson line are known, the action of an operator on a state is determined:

 $[U_a]_{n_a}^{m_a}[U_b]_{n_b}^{m_b} = \sum \langle j_a m_a j_b m_b | j_c, m_c \rangle \langle j_c, n_c | j_a n_a j_b n_b \rangle [U_c]_{n_c}^{m_c}$

Algebra of Networks **Fusion rule** $a \times b = \sum N_{ab}^c C$ $N_{ab}^c = \delta_{abc} = \begin{cases} 1 & |j_a - j_b| \le j_c \le j_a + j_b, j_a + j_b + j_c \in \mathbb{Z} \\ 0 & \text{else} \end{cases}$

 $a \qquad b = \sum_{c} \sqrt{\frac{d_c}{d_a d_b}} \qquad a \qquad b$ $= \sum_{f} [F_d^{abc}]_{ef}$

Wigner 6-j symbol

 $[F_{d}^{abc}]_{ef} = (-1)^{j_a + j_b + j_c + j_d} \sqrt{d_e d_f} \begin{cases} j_a & j_b & j_e \\ j_a & j_d & j_e \end{cases}$

 $b = \delta_c^{c'} \int \frac{d_a d_b}{d}$

+consistency condition

Hamiltonian $H = J \sum (E_i(e))^2 - K \sum tr U(f)$ $e \in E$

set of edges

Action on a state

 $E_i^2 \bullet a = C_2(a) \bullet a$

cf. Levin, Wen, Phys. Rev. B 71 (2005) 045110

If [g] is a center element, $S_{[g]}$ is 't Hooft operator If [g] is a center element and path is closed loop, $S_{[g]}$ is symmetry operator for 1 form symmetry

Gauge invariant operators Wilson loop: $W_a(C) = tr$ $U_a(l)$ a : representation $l \in C$ Gukov-Witten operator $S_{[g]}(C^*)$ with boundary: e.g., shortest one is $S_{[g]}(e^*) = \int_{e^{it_k \theta^k} \in \mathscr{C}_g} d\theta e^{iR_k(v)\theta^k}$ $[g = e^{it_k \theta^k}]$: representative of conjugacy class $\mathscr{C}_g = \{hgh^{-1} | h \in G\}$

Action of $S_{[g]}(e^*)$ on Hilbert space

$\chi_a(g)$: Character $\frac{\sin \frac{2j_a+1}{2}\theta}{SU(2):\frac{\sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}}$ **e.g.**, U(1): $e^{in_a\theta_g}$ d_a : dimension of representation **e**.g., $d_a = 1$ $d_a = 2j_a + 1$

TQFT formulation for Lattice gauge theory

lopological algebra

A

b

Wigner 6-j symbol $[F_d^{abc}]_{ef} = (-1)^{j_a + j_b + j_c + j_d} \sqrt{d_e d_f} \begin{cases} j_a & j_b & j_e \\ j_c & j_d & j_f \end{cases}$

+consistency condition

C

Consider

TQFT calculas

TQFT calculas

TQFT c Basis of Hilbert space

 S^2

This is nothing but the basis of two plaquettes $j_1 \begin{bmatrix} j_2 & j_3 \end{bmatrix} |j_1, j_2, j_3\rangle$

F

TQFT calculas

With $|j_1 - j_2| \le j_3 \le j_1 + j_2, j_1 + j_2 + j_3 \in \mathbb{Z}$

More generally (n+1) defects on S^2

n plaquettes lattice system

Action of operators

Action of Wilson loop $tr U_a$ on left plauqette

Action of GW operator on middle link

Evaluate using topological algebra

Casimir invariant and character For Lie group $-\Delta_G \chi_a(g) = C_2(a)\chi_a(g)$ Laplacian (E^2) Casimir Example: SU(2) $\Delta_{G} = \frac{\partial^{2}}{\partial \theta^{2}} + \frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \frac{\partial}{\partial \theta} \qquad \chi_{j_{a}}(g) = \frac{\sin \frac{2j_{a}+1}{2}\theta}{\sin \frac{\theta}{2}} \qquad g = e^{i\theta t_{3}} \qquad -\Delta_{G}\chi_{j_{a}}(g) = j(j+1)\chi_{j_{a}}(g)$ We can replace E^2 by $E^2 \simeq \frac{6}{\epsilon^2}(1 - S_{[e^{i\epsilon t^3}]}(e^*))$

Hilbert space with matter field matter field = source of electric flux defect where a Wilson line can terminate defect where a GW line can terminate

Dual Hilbert space

Wilson line network

 $|j_1, j_2, j_3\rangle$

Gukov-Witten(GW) network

$|[g_1], [g_2], [g_3]\rangle$

Correspondence between G basis and GW network basis

$|g_1, g_2, g_3\rangle$

$\begin{bmatrix} g_1 g_3^{-1} \end{bmatrix} \\ \begin{bmatrix} g_1 g_2^{-1} \end{bmatrix} \begin{bmatrix} g_2 g_3^{-1} \end{bmatrix}$

$|[g_1g_2^{-1}], [g_2g_3^{-1}], [g_1g_3^{-1}]\rangle$

Confinement and deconfinement phase $H = -J \sum_{e^{it^{3}e}} S_{e^{it^{3}e}}(e^{*}) - K \sum_{1/2} tr U_{1/2}(f)$ $e^* \in E^*$

Strong coupling limit $H = -J \sum S_{e^{it^3}\epsilon}(e^*)$ $e^* \in E^*$

Weak coupling limit f∈F

f∈F

Trivial state for S_g $S_g | \Omega_{sc} \rangle = | \Omega_{sc} \rangle$

 $H = -K \sum \operatorname{tr} U_{1/2}(f) \text{ Trivial state for } \frac{1}{d_a} \operatorname{tr} U_a \quad \frac{1}{d_a} \operatorname{tr} U_a \mid \Omega_{\mathrm{wc}} \rangle = \mid \Omega_{\mathrm{wc}} \rangle$

Confinement and deconfinement phase in Rep basis

We write $|\Omega_{sc}\rangle =$

$\mathrm{tr}U_a | \Omega_{\mathrm{sc}} \rangle = \mathbf{O}^a$

$\langle \Omega_{\rm sc} | {\rm tr} U_a | \Omega_{\rm sc} \rangle = 0 \quad \text{confinement}$

which is orthogonal to $|\Omega_{\rm sc}\rangle$

Confinement and deconfinement phase in Rep basis

 $|\Omega_{\rm WC}\rangle = \mathcal{N} \sum_{a_1 a_2} d_{a_1} d_{a_2} d_{a_3}$ a_1, a_2, a_3

Stringnet condensation

 $\frac{1}{d_a} \operatorname{tr} U_a \left| \Omega_{\rm wc} \right\rangle =$

$\langle \Omega_{\rm sc} | {\rm tr} U_a | \Omega_{\rm sc} \rangle = 1$ deconfinement

Confinement and deconfinement phase in Gukov-Witten network basis

We write $|\Omega_{wc}\rangle =$

$|\Omega_{st}\rangle = \mathcal{N}\sum_{[g_1],[g_2],[g_3]}\prod_i \frac{|\mathscr{C}_{[g_1]}|}{|G|}$

magnetic charge condensation

Confinement and deconfinement phase in Gukov-Witten network basis

 $S_g | \Omega_{\rm wc} \rangle =$ disorder parameter 't Hooft operator g is center

which is orthogonal to $|\Omega_{\rm WC}\rangle$

 $\langle \Omega_{\rm wc} | S_g | \Omega_{\rm wc} \rangle = 0$ deconfinement

Strong λ limit (Deep Higgs phase) $H = -\lambda \sum \phi^{\dagger} U_{a} \phi \qquad \phi^{\dagger} U_{a} \phi | \Omega_{\text{Hggs}} \rangle = | \Omega_{\text{Hggs}} \rangle$ $e \in E$

Analogy with Higgs condensation $H = -J \sum_{e^{it^{3}e}} (e^{*}) - K \sum_{e^{it^{3}e}} (f) - \lambda \sum_{e^{it^{3}e}} \phi^{\dagger} U_{a} \phi - \lambda_{e} \sum_{e^{it^{3}e}} \Pi^{2}(v)$ $e \in E$ $v \in V$ $|\phi| = 1$

(complete) deconfinement

 2π

 $P_{C}(\theta)$ localize at $\theta = 0$ $P_{C}(\theta)$ 2π periodic

All
$$\frac{1}{d_a} \langle \operatorname{tr} U_a(C) \rangle = 1$$

 π

Existence of center vortex implies 2π periodicity

Confinement and 'Center vortex' Expectation value of Wilson loop for large loop C $\frac{1}{d_a} \langle \text{tr} U_a(C) \rangle = \int d[g] P_C([g]) \frac{1}{d_a} \chi_a([g]) = \int_0^{2\pi} d\theta P_C(\theta) \cos \frac{\theta}{2}$ for SU(2) **Possible distributions**

 2π

Confinement

 $\frac{1}{d_k} \langle \operatorname{tr} U_k(C) \rangle \neq 0$ $\frac{1}{d_{k+1/2}} \langle \operatorname{tr} U_{k+1/2}(C) \rangle = 0$

 π

(complete) confinement flat distribution $P_{C}(\theta)$ $\operatorname{AII} \frac{1}{d_a} \langle \operatorname{tr} U_a(C) \rangle = 0$

 π

Summary Lattice gauge theory

in Hamiltonian formalism Topological quantum field theory with defects

Outlook Higher dimensions, asymptotic free, confinement mechanism,...

Choice of Hamiltonian determine shape of lattice

honeycomb lattice

square lattice

Deconfinement limit is unstable $H = H_0 + H_1$ $H_0 = -K \sum \text{tr} U_a(f)$ Ground state $|\Omega_{\text{wc}}\rangle$ fEF $H_1 = J \sum E^2(e)$ $e \in E$ **First order perturbation** $\langle \Omega_{\rm wc} | H_1 | \Omega_{\rm wc} \rangle = J \sum E^2(e) \sim V j_{\rm max}^2 \to \infty$ $e \in E$

Confinement? or Coulomb phase?

Regularization: $SU(3) \rightarrow SU(3)_k$: Quantum deformation

Solving Gauss law constraint:

 a, b, c, \cdots : representation of Wilson lines, e.g., fundamental, adjoint,...

 $\mu, \nu, \rho, \dots \in N_{ab}^c$: Multiplicity index

which preserve properties of gauge symmetry Physical states are network of Wilson lines

with fusion rule $a \times b = \sum N_{ab}^c$

Algebra of Wilson lines for $SU(3)_{k}$

a'

+consistency condition

 $d_a d_b$

$SU(3)_k$ Yang-Mills theory

in mean field approximation for $SU(3)_k$ in (2+1) dimensions

Application

Confinement-deconfinement phase transition

Variational ansatz for wave function

$|\Psi\rangle = \int \psi(a_f) \operatorname{tr} U_{a_f}(f) |0\rangle$ $f \in \mathcal{F} \ a_f$

We minimize the energy expectation value open boundary condition, infinite volume limit $E = \min_{\psi} \langle \Psi | H | \Psi \rangle$

Dusuel, Vidal, Phys. Rev. B 92 (2015) 12, 125150, Zache, González-Cuadra, Zoller, 2304.02527, Hayata, YH, JHEP 09 (2023) 126

We can calculate observables for given wave function Energy density $h = \frac{1}{V} \langle H \rangle = \sum_{a,b,c} C_2(c) N_{\bar{a}b}^c \frac{d_c}{d_a d_b} |\psi(a)\rangle$ $C_2(a)$ Casimir invariant, d_a : quantum dimensions, N_{ab}^c : multiplicity Wilson loop $\langle \operatorname{tr} U_d(\partial S) \rangle = d_d \exp(-|S|\sigma_d)$ String tension $\sigma_d := \ln \frac{1}{\sum_{a,b} N^a_{db} \psi}$

Hayata, YH, JHEP 09 (2023) 126

$$|\psi(b)|^2 |\psi(b)|^2 - \frac{K}{2} \sum_{a,b} \psi^*(a) \left(N^a_{(1,0)b} + N^a_{(0,1)b} \right) \psi^{ab}$$

$$rac{y_d}{\psi^*(a)\psi(b)}$$

Numerical results

Numerical results

Topological phase:

String-net condensation: $\psi(a) \sim d_a$ where string tension vanishes

Comparison with Monte-Carlo simulation Plaquette (small Wilson loop) String tension

Good agreement for large k!

Thermalization on a small lattice

Small lattice system

Basis $|j_1, \dots, j_{12}\rangle = |j_1, j_2, j_6\rangle |j_2, j_3, j_7\rangle |j_3, j_4, j_8\rangle |j_1, j_4, j_5\rangle$ $|j_6, j_9, j_{10}\rangle |j_7, j_{10}, j_{11}\rangle |j_8, j_{11}, j_{12}\rangle |j_5, j_9, j_{12}\rangle$

 $\mathbf{Cutoff}\, j_i \leq j_{\max} = k/2$

Dimension of Hilbert space

We employ $j_{max} = 4$: dim $\mathcal{H} = 87,426,119$

Setup In order to mimic heavy ion collision experiments, the interaction quenching

 $t \ge 0 | \Psi(t) \rangle = e^{-iHt} | Vac \rangle_{K=0}$

Temperature and Canonical Ensemble

Energy is fixed by an initial condition $E = \langle H \rangle = \langle \Psi(t) | H | \Psi(t) \rangle$

 $E = \langle H \rangle_{eq} := tr \rho_{eq} H$ with $\rho_{eq} = 1$ tre-\$H

- (Independent of time)
- For a given energy, a canonical distribution that reproduces the expected value can be defined

Numerical results

Expected value of Wilson loop Strong coupling (low temperature $T < E_1$) first excited energy

Fluctuations are not small.

Expected value of Wilson loop Weak coupling (high temperature $T > E_1$)

Steady state observed

Long-time average vs canonical ensemble

Difference is less than 1% for K > 5

Close to Boltzmann time $2\pi\beta$.

Goldstein, Hara, Tasaki, New J. Phys. 17 (2015) 045002

QCD_2 at finite density

QCD at finite density

•What is the equation of state for QCD at finite density? How does the quark distribution function change when transitioning from baryonic matter to quark matter? •What kind of phase is realized? An inhomogenous phase?

$$J = \frac{ag_0}{2}, w = \frac{1}{2g_0 a}, m = \frac{1}{2g_$$

(dimensionless)QCD₂ Hamiltonian

 m_0/g_0 We use $g_0 = 1$ unit

c field term

$\chi(n) + \chi^{\dagger}(n)U^{\dagger}(n)\chi(n+1) \bigg)$ g term

Mass term

Elimination of Link variables U

Sala, Shi, Kühn, Bañuls, Demler, Cirac, Phys. Rev. D 98, 034505 (2018) Atas, Zhang, Lewis, Jahanpour, Haase, Muschik, Nature Commun. 12, 6499 (2021)

 $\Theta_{\chi}(n)\Theta^{\dagger} := U(n-1)U(n-2)\cdots U(1)\chi(n)$ n=1 m=1*n*=1 N n=1

$\Theta H \Theta^{\dagger} = J \sum_{i=1}^{N-1} \left(\sum_{i=1}^{n} \chi^{\dagger}(m) T_{i} \chi(m) \right)^{2}$ Electric fields term

$+w\sum^{N-1}\left(\chi^{\dagger}(n+1)\chi(n)+\chi^{\dagger}(n)\chi(n+1)\right)$

Hopping term

 $+m\sum_{n=1}^{\infty}(-1)^n\chi^{\dagger}(n)\chi(n)$ mass term

As a variational ansatz of wave function •We employ a matrix product state $|\psi\rangle = \langle n_1 \rangle \cdots \langle n_N \rangle \operatorname{tr} M_1^{n_1} \cdots M_N^{n_N}$ $\{n_i\}$ $[M_{i}^{n_{i}}]_{ii}$: $D \times D$ matrix Optimize the wave function by density matrix renormalization group technique $E = \min(\psi | H | \psi)$ Ψ We employ iTensor

Numerical results

Pressure

Color SU(2), 1 flavor, vacuum $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$ Energy density

Inhomogeneous phase (density wave) $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathcal{H} = 2^{320}$

m = 1.0

Wave number dependence $J = 1/8 \ w = 2 \ V = 40 \ \dim \mathscr{H} = 2^{320}$

Wave number dependence

Hadronic picture

If hadron interactions are repulsive

 $1/n_B$

distance $1/n_B \Rightarrow k = 2\pi n_B$

Quark picture

If interactions between quarks Fermi surface is unstable

 \Rightarrow density wave $k = 2p_{\rm F} = 2\pi n_{\rm B}$

Quark distribution function $J = 1/8 \ w = 2 \ V = 60 \ \dim \mathcal{H} = 2^{480}$

> Low density No Fermi sea • High density Fermi-sea +BCS like pairing (density wave)

baryon quark transition around $n_R \sim 0.2$

SU(3) QCD with $N_f = 1$

Color SU(3),1 flavor $J = 1/8 \ w = 2$ $V = 12 \ \dim \mathscr{H} = 2^{144}$ PressureEnergy density

Color SU(3), 1 flavor $J = 1/8 \ w = 2 \ V = 12 \ \dim \mathcal{H} = 2^{144}$

density wave

Wave number dependence Quark distribution

Baryon quark transition around $n_R = 0.3$?

• Formalism Kogut-Susskind Hamiltonian formalism Application $SU(3)_k$ gauge theory in (2 + 1) dimensions **Confinement-topological phase transition Thermalization of Yang-Mills theory** in (3+1)-dimensional small systems Relaxation time of thermalization $\tau_{\rm eq} \sim 2\pi/T$ Boltzmann time QCD_2 at finite density baryon quark transition, inhomogeneous phase

Summary

