High-Energy Cosmic Neutrinos as Probes of New Physics

Kohta Murase (PSU/YITP) June 16 The Frontier of Particle Physics

Why Cosmic V?

- Electrically neutral lepton
- Weak interaction: ghost particle
- Almost massless but tiny mass (<1/10⁶ electron mass)

Astrophysics

Particle Physics

IceCube & Discovery of High-Energy Cosmic Neutrinos

IceCube @ south pole 2012-2013: evidence of completed in 2010 high-energy cosmic v IceCube Lab 50 m PHYSICAL Review ΓTERS 12 JULY 2013 Science 1450 m APS Volume 111, Number 2 American Physical Society. Deep Core 2450 m 2820 m Eiffel Tower - volume~1 km³, mass~Gton MAAAS - 86 strings (120 m spacing) - 5160 PMTs (17 m spacing)

~ 1 PeV = 10¹⁵ eV >> 1-10 MeV (supernova/solar v) L ~ 1 Gpc ~ 3x10²² km >> 295 km (T2K)

Global Neutrino Detector Network

Plan of Talk

High-energy cosmic neutrinos can be unique as probes of new physics

- natural high-energy \boldsymbol{v} beams that are hard to create with ground accelerators

- unique advantages (ex. long travel distance, high dark matter density)
- Review of high-energy cosmic neutrino observations and implications
- New physics search
 - new v interactions
 - SM-DM interactions
 - pseudo-Dirac $\boldsymbol{\nu}$
 - ν decay
 - conventional DM search

Disclaimer:

There are many things that cannot be covered...

DM-SM interaction in the Sun, atmospheric neutrino oscillation,

sterile neutrinos, v mag. moment, Lorentz variance violation etc.

Neutrino Event Types

2 "main" event types

" v_{μ} track"

"shower"

 ν_{μ} +N $\rightarrow \mu$ +X

~2 energy resolution <1 deg ang. resolution (pointing)

~10% energy resolution ~5-10 deg ang. resolution

Anti-Neutrino Detection

• Shower deposited energy = 6.05 PeV

a

 Glashow resonance (GR) event at E=6.3 PeV (~2.3σ) (predicted in 1959 by Glashow)

10¹¹

3 ms after t.

Tau Neutrino Candidates

IceCube 22 EPC

Latest Results on High-Energy Neutrinos

- "ESTES" (10.3 yr) (Enhanced Starting Track Event Selection)
- Best-fit: s=2.58+0.10-0.09

- "MESE" & Combined Fit (Medium Energy Starting Events)
- Simple power law excluded
 w. ~4σ level

Upgoing vs Downgoing

Ultrahigh-Energy Neutrino Observations

- KM3Net: E_v =220 PeV from 0.6 deg above the horizon (21 lines & 287.4 d)
- IceCube: no extremely high-energy events in downgoing/horizontal direction
- 2.9σ tension between KM3Net and IceCube measurements

Neutrino Flavors

Neutrino oscillation

$$P_{\alpha \to \beta}(t) = \left| \sum_{k=1}^{n} U_{\beta k}^{*} \exp(-iEt) U_{\alpha k} \right|^{2}$$

U: lepton mixing matrix (Pontecorvo-Maki-Nakagawa-Sakata)

long baseline limit: ν_e:ν_μ:ν_τ ~ 1:1:1

Modifications

- matter effect
- muon cooling/damp (Kashti & Waxman 05 PRL)
- v-v forward scattering (Abbar, Carpio & KM 22)
- Beyond Standard Model
- (e.g., Bustamante, Beacom & Winter 15 PRL) Arguelles, Katori & Salvado 15 PRL Shoemaker & KM 16 PRD)

IceCube 25 & CNAPAP

MESE

Neutrino Interactions

- Consistent w. SM cross section
- Inelasticity measurements from 80-560 GeV (w. DeepCore)
- Can be used for constraining the ratio of antineutrinos to neutrinos

Extragalactic Multimessenger Connection: Current

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if v sources are γ -ray transparent

→ Requiring hidden (i.e., γ-ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ-ray transparent sources)

Extragalactic Multimessenger Connection: Current

10-100 TeV shower data: large fluxes of ~10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

Fermi diffuse γ -ray bkg. is violated (>3 σ) if ν sources are γ -ray transparent

→ Requiring hidden (i.e., γ -ray opaque) cosmic-ray accelerators (v data above 100 TeV can still be explained by γ -ray transparent sources)

Flares from Supermassive Black Hole Jets?

Where Do Neutrinos Come from?

compatible w. $p\gamma$ calorimetry ($f_{p\gamma}$ >1) condition: R < 30-100 R_s Black hole: sub-PeV proton accelerator & ideal beam dump

Multimessenger View of the Milky Way

IceCube 23 Science

Neutrino emission from the Milky Way (~10% of total) has been observed w. 4.5σ

Galactic Multimessenger Connection

Galactic plane

Discovery of sub-PeV γ rays in 2021 (Tibet ASγ Collaboration 21 PRL LHAASO Collaboration 23 PRL)

SWGO_KM3Net_Gen2 etc
 SWGO_KM3Net_Gen2 etc

 \rightarrow SWGO, KM3Net, Gen2 etc. relevance of templates

High-Energy Cosmic Neutrino as Probes of BSM Physics

BSM Imprints on Spectra/Flavors

- Not realistic to expect in astrophysical scenarios
- BSM scenarios required (ex. superheavy DM)
- Neutrino cascades (Yoshida 94 APh)

$$E_{c}^{\rm res} = \frac{m_{fl}^2}{2m_c (1+z)}$$

Das, Carpio & KM 25 PRD

Other Possible Resonances

Secret Neutrino Interactions

ex.

Bardin, Bilenky & Pontecorvo 70

Applications to IceCube loka & KM 14 PTEP Ng & Beacom 14 PRD see also Ibe & Kaneta 14 PRD Araki+ 14 PRD Cherry+ 14 JHEP

ex1. Majorana v self-interactions via a scalar

$$\mathcal{L} = -\frac{1}{2} \sum_{i} (m_{\nu_i} + \mathcal{G}_i \phi) \nu_i \nu_i + cc + ...,$$

SSB
lepton # violation

$$m_{\nu_i} = \frac{g_i \mu v^2}{\Lambda^2}$$

$$\mathcal{L} = -\frac{g}{\Lambda^2} \Phi (HL)^2 + cc.$$

ex2. L_{μ} - L_{τ} gauged 10^{2} ex3. interaction w. "sterile" neutrinos - m_v is replaced with m_s

- limits are weaker due to sin θ_s

Effects on Cosmic Neutrino Spectra

Carpio, KM, Shoemaker & Tabrizi 23 PRD

Scalar Mediator Case

Diffuse neutrino observations could give the best constraints but the limits depend on spectra that may not be power law

Vector Mediator Case

Example of a Z' model – gauged L_{μ} - L_{τ} (ex. Araki+14)

L	\supset	$g_{\mu\tau}j^{lpha}_{\mu- au}Z'_{lpha}$	_	$\frac{m_{Z'}^2}{2}Z_0^2$	$_{\alpha}^{\prime}Z^{\prime\alpha}$
---	-----------	--	---	---------------------------	--------------------------------------

Probing v-v/v-DM Interactions

BSM & Time-Domain Multi-Messenger Astrophysics

Supernovae as High-Energy Neutrino Sources

- SNe as "multimessenger" & "multi-energy" neutrino source
- Importance of "global ν detector network" (Kheirandish & KM 23 ApJL)
- ~1000 events of TeV v from the next Galactic SNe (KM 18, 24 PRD)
- LHC ATLAS/CMS as cosmic ν detectors (Wen, Arguelles, Kheirandish & KM 24 PRL)

Jetted Supernovae as High-Energy Neutrino Sources

Flavor Impacts of High-Energy Neutrino S

High-energy v & MeV v : self-interactions (forward scattering)

$$id_{t}\varrho_{\mathbf{p}} = \left[\frac{\mathsf{U}\mathsf{M}^{2}\mathsf{U}^{\dagger}}{2E_{\nu}} + \mathsf{H}_{\mathrm{m}} + \mathsf{H}_{\nu\nu,\mathbf{p}}, \varrho_{\mathbf{p}}\right] \qquad \mathsf{H}_{\nu\nu,\mathbf{p}} = \sqrt{2}G_{\mathrm{F}}\int \frac{\mathrm{d}^{3}p'}{(2\pi)^{3}}(1 - \mathbf{v}\cdot\mathbf{v}')(\varrho_{\mathbf{p}'} - \bar{\varrho}_{\mathbf{p}'})$$
$$u \approx \sqrt{2}G_{\mathrm{F}}n_{\nu}\hbar^{2}c^{2}\xi \simeq 6.4 \times 10^{-6} \mathrm{cm}^{-1}\left(\frac{n_{\nu}}{10^{27} \mathrm{cm}^{3}}\right)\xi \qquad \xi \approx \Theta^{2}/2 \sim 1/(2\Gamma^{2})$$

short-scale conversions rapidly lead to the flavor mixing

BSM CR-DM Interactions

Herrera & KM 24 PRDL

- v-DM/ v-v interaction:
 High-energy cosmic vs
 as a natural beam
- CR-DM interaction: Complementarity to the low-energy frontier of direct detection experiments
 - CR cooling due to BSM
 - CR-boosted DM

Dark Matter Spike Around Black Holes

$$\rho_{\rm sp}(r) = \rho_R g_{\gamma}(r) \left(\frac{R_{sp}}{r}\right)^{\gamma_{\rm sp}}$$
$$g_{\gamma}(r) \simeq (1 - \frac{4R_s}{r})$$

 $R_{\rm sp} = \alpha_{\gamma} r_0 (M_{\rm BH}/(\rho_0 r_0^3)^{\frac{1}{3-\gamma}}$ spike size

 $\gamma_{\rm sp} = \frac{9-2\gamma}{4-\gamma}$ cuspiness, γ =1 (NFW)

modification necessary for annihilating DM

• Adiabatic growth

A substantial increase in the black hole mass takes place after its initial formation, and the mass accretes slowly to the pre-existing seed black hole. (e.g., Peebles 72, Quinlan+ 95)

• NGC 1068: dynamical time < Salpeter time is justified

Dark Matter Distribution & Cosmic-Ray Cooling

- DM density can be very high at the center of AGN ("DM spike")
- NGC 1068 vs originate from CRs within ~30-100 Schwarzschild radii
- Neutrino emission would not be seen if DM-p scattering was too efficient
- γ -ray emission would not be seen if DM-e scattering was too efficient

CR Cooling Limits on DM-p and DM-e Interactions

Herrera & KM 24 PRDL

- Most stringent constraints for dark matter in the MeV range
- Important for freeze-in DM (ex. Elor+ 23 PRL) & thermal DM (ex. Boehm & Fayet 03)
- Complementary to CR-boosted DM limits with XENON/LZ and Super-K

Example of Scalar-Mediated DM-Nucleon Interactions

Herrera & KM 24 PRDL

NGC 1068 observations enable us to probe new parameter space

Gustafson, Herrera, Mukhopadhyay, KM & S

Maximum a

Constraints on Inelastic DM

DIS helps

Pseudo-Dirac Neutrinos

Meaningful limits by IceCube-Gen2 but astro-model dependent

- Spectral modulation may be caused
- Energy-dependent flavor constraints would be more model independent

Summary

General Implications

- τ candidates, hints of the ν spectral curvature, debate on the KM3Net event
- Multimessenger analyses on 10 TeV ν data require hidden CR accelerators
- NGC 1068 (AGN): evidence of a hidden v source
- Milky Way: multimessenger connection now observed

New v Interactions

- Spectral & flavor modulations
- Time delays (& arrival directions) can also be used
- Useful as probes of v-v & v-DM interactions
- Supernovae high-energy νs allow us to measure ν flavors
- CR cooling & CR-boosted DM er provide power probes of MeV-GeV DM
- Advantage of super-long baseline \rightarrow ex. pseudo-Dirac vs, v decay

Indirect Search for Dark Matter

- Multimessenger constraints on DM models explaining n observations
- Beyond the IceCube energy range
- Nearby DM halos provide more direct tests

Neutrino Decay: Normal Hierarchy

Neutrino Decay: Normal Hierarchy

Bustamante, Beacom & KM 17 PRD, Abdullahi & Denton 21 PRD

Neutrino Decay: Inverted Hierarchy

IH is not disfavored yet by the flavor information

Bustamante, Beacom & KM 17 PRD

(see also Shoemaker & KM 16 PRD) 3.5 12 $\gamma = 2.50$ **Decay NH** 5 yr = 2.5011 Glashow resonance 3.0 PeV showers in Shower count $E_{
m sh} dN_{
m sh}/dE_{
m sh}$ (5 yr) at 6.3 PeV 10 2.5 9 8 2.0 No decay NH Complete decay 1.5 ω No decay IH Ń Number of 1.0 $P_{n\geq 1}\approx 0.16$ 0.5 Complete decay IH **Decay IH** 0.0 10° 10^{1} 102 10^{3} 10^{4} 10^{-1} **10**6 107 Shower energy $E_{\rm sh}$ [GeV] Neutrino lifetime τ/m [s eV⁻¹]

Neutrino Decay: Inverted Hierarchy

GR detection can give the best constraints in the IH case

IH, visible decay

Bustamante, Beacom & KM 17 PRD (see also Shoemaker & KM 16 PRD)

Future Constraints on Neutrino Decay

Multimessenger Emission of Decaying Dark Matter

- Galactic: $\gamma \rightarrow \text{direct}$ (w. some attenuation), $e^{\pm} \rightarrow \text{sync.} + \text{inv.}$ Compton
- Extragalactic \rightarrow EM cascades during cosmological propagation

Testable with existing Fermi (sub-TeV γ) and air-shower (sub-PeV γ) data

Multimessenger Search for TeV-EeV Scale Dark Matter

- IceCube, LHAASO and Fermi limits are complementary and comparable
- Nearly excluding dark matter scenarios to explain the all-sky IceCube v data
- Unique probes of superheavy dark matter that is difficult to directly test

Model-Dependent Results

Examples of Models (EFT)

EFT (up to dimension 6)

$\Big(R_{SU(2)}\Big)_Y$	operator	final states	ratios of BR's, $m_\chi \gg {\rm TeV}$	$\tau\gtrsim 10^{27}~\rm{[s]}$				
spin 0								
(0)0	$\chi H^{\dagger} H$	$hh,Z^0Z^0,\!W^+W^-,\!f\bar{f}$	$1:1:2:16N_c y_f^2 \frac{v^2}{m_\chi^2}$	$\bar{m}_\chi/\bar{\Lambda}^2\gtrsim 9\times 10^{79a}$				
	$\chi \left(LH ight) ^{2}$	$\begin{split} & \nu\nu hh, \nu\nu Z^0 Z^0, \nu\nu Z^0 h, \\ & \nu e^- h W^+, \nu e^- Z^0 W^+, e^- e^- W^+ W^+, \\ & \nu\nu h, \nu\nu Z^0, \nu e^- W^+, \nu\nu \end{split}$	$ \begin{array}{c c} \nu\nu hh, \nu\nu Z^0 Z^0, \nu\nu Z^0 h, \\ W^+, \nu e^- Z^0 W^+, e^- e^- W^+ W^+, \\ \nu\nu h, \nu\nu Z^0, \nu e^- W^+, \nu\nu \end{array} \begin{array}{c} 1:1:2: \\ 24\pi^2 \frac{v^2}{m_\chi^2} \left(1:1:1:768\pi^2 \frac{v^2}{m_\chi^2}\right) \end{array} $					
	$\chi H \bar{L} E$	$h\ell^+\ell^-, Z^0\ell^+\ell^-, W^{\pm}\ell^{\mp}\nu, \ell^+\ell^-$	$1:1:2:32\pi^2rac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 4\times 10^{29}$				
	$\chi \tilde{H} \bar{Q} U, \phi H \bar{Q} D$	$hqar{q},Z^0qar{q},W^\pm q'ar{q},qar{q}$	$1:1:2:32\pi^2\frac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{30}$				
	$\chi B_{\mu\nu} \overset{(\sim)}{B}{}^{\mu\nu}$	$\gamma\gamma,\gamma Z,ZZ$	$c_W^4: 2 c_W^2 s_W^2: s_W^4$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 2\times 10^{31}$				
	$\chi W_{\mu u} W^{(\sim)}_{W}{}^{\mu u}$	$\gamma\gamma, \gamma Z^0, Z^0 Z^0, W^+ W^{-b}$	$s_W^4: 2c_W^2 s_W^2: c_W^4: 2$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 6\times 10^{31}$				
	$\chi G_{\mu u} \overset{(\sim)}{G}{}^{\mu u}$	hadrons	1	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 2\times 10^{32}$				
	$\chi D_{\mu} H^{\dagger} D^{\mu} H$	$hh, Z^0 Z^0, W^+ W^-$	1:1:2	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 3\times 10^{30}$				
$(2)_{1/2}{}^d$	$V_{\hat{\lambda}} [114]^e$	hhh,hZ^0Z^0,hW^+W^-	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-53}$				
	$V_{c_{\beta-\alpha}}$ [114] ^{e,f}	$hh, Z^0 Z^0, W^+ W^-$	$\left(1 + (\lambda_T - 2\lambda_A)/\lambda\right)^2 : 1:2$	$\bar{m}_\chi/c^2_{\beta-\alpha}\gtrsim 4\times 10^{48}$				
	$\phi \bar{L} E$	$\ell^+\ell^-$	1	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
	$\tilde{\phi} \bar{Q} U, \phi \bar{Q} D$	qar q	1	$g^2 \bar{m}_\chi \lesssim 6 \times 10^{-57}$				
	$\phi^a \tilde{H} \sigma^a H$	$hh,Z^0Z^0,\!W^+W^-,\!f\bar{f}$	$1:1:2:16N_c y_f^2 \frac{v^2}{m_\chi^2}$	$\bar{m}_\chi/\bar{\Lambda}^2\gtrsim 9\times 10^{79}$				
(3)0	$\phi^a W^a_{\mu\nu} B^{\mu\nu}$	$\gamma\gamma, Z^0\gamma, Z^0Z^0$	$c_W^2 s_W^2 : 2 \big(c_W^2 - s_W^2 \big)^2 : c_W^2 s_W^2$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{31}$				
(\$)0	$\phi^a \bar{L} E \sigma^a H$	$h\ell^+\ell^-,Z^0\ell^+\ell^-,W^\pm\ell^\mp\nu,\ell^+\ell^-$	$1:1:2:32\pi^2 \frac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 4\times 10^{29}$				
	$\phi^a \bar{Q} U \sigma^a \tilde{H}, \phi^a \bar{Q} D \sigma^a H$	$hqar{q},Z^0qar{q},W^\pm q'ar{q},qar{q}$	$1:1:2:32\pi^2\frac{v^2}{m_{\chi}^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{30}$				
$(3)_1$	$\phi^a L^T \sigma^a \sigma^2 L$	νν	1	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
spin 1/2								
$(1)_{0}$	$\tilde{H}\bar{L}\psi$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
$(2)_{1/2}$	$ ilde{H}ar{\psi}E$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
$(3)_0$	$H\bar{L}\sigma^a\psi^a$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
spin 1								
(0) ₀	$\bar{f}\gamma_{\mu}V'^{\mu}f$	$far{f}$	see text	$N_c g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$				
	$B_{\mu\nu}F^{\prime\mu\nu}/2$	$far{f}$	see text	$g^2 \bar{m}_\chi \lesssim 4 \times 10^{-56}$				

Viable DM Scenarios?

- High-energy diffuse neutrino data can be explained by multiple final states
- Medium energy diffuse neutrino data in the 10-100 TeV range can only be explained by neutrinophilic DM

Current Energy Frontier in Space

EeV-10 YeV scale

 UHECR measurement & UHE photon limits: τ_{DM} > 10³⁰ s up to GUT scale: world-best limits for EeV or higher

The Highest-Energy Particles & Inflaton DM

- Collaboration w. A01
- Inflaton DM models in (modified) natural inflation (entropy dilution necessary)
- Scalar DM $\phi \to H\bar{q}q, \ \bar{H}\bar{l}l, \ \bar{H}H, \ gg, \ AA, \ BB,$
- UHE neutrons can also be used as good probes of superheavy DM *E* [GeV]

Future Energy Frontier in Space

Essentially no atmospheric v bkg.

Future Neutrino Search for Superheavy Dark Matter

Das, Carpio & Murase 25 PRD

Future Tests for Dark Matter Scenarios

Nearby DM halos (clusters & galaxies) should be seen as point/extended sources

 $flux \propto M_{dm}/\tau_{dm}/d^2$

stacking or cross-correlation powerful independent of γ–ray limits

Nama	Galaxy	$\log \hat{J}^{dec}$	Decl.	de	$M_{\rm vir}$	Tyle	θ
INITIR!		$[GeVem^{-2}sr]$	[deg]	[Mpe]	$[M_{\odot}]$	[kpe]	[deg]
Andromoda	-	20.76	41.06	0.75	12.44	369.96	28.26
NGC 4472	Virgo	20.33	12.41	15.82	14.66	2023.32	7.33
NGC 5128	-	19.9	-45.53	3.63	12.95	546.68	8.62
NGC 0253	-	19.76	-25.21	3.49	12.78	477.98	7.84
Maffei 1	-	19.68	59.61	3.46	12.69	447.79	7.41
NGC 6822	-	19.42	-14.8	0.48	10.71	97.91	11.69
NGC 3031	-	19.57	69.22	3.65	12.63	427.63	6.71
NGC 4696	Centaurus	19.55	-41.22	37.27	14.62	1971.53	3.03
NGC 1399	-	19.42	-35.39	18.16	13.87	1105.77	3.49
IC0356	-	19.36	69.78	13.9	13.57	881.97	3.63
NGC 4594	-	19.32	-11.49	11.34	13.36	751.37	3.8
ESO 137-G 006	Norma	19.42	-60.91	75.25	15.1	2842.43	2.16
NGC 4736	-	19.07	41.36	4.43	12.3	331.68	4.29
NGC 1275	Perseus	19.37	41.51	77.64	15.08	2796.52	2.06
NGC 3627	-	19.12	13.13	9.71	13.02	578.85	3.42
NGC 1316	Fornax	19.1	-37.11	18.42	13.56	873.63	2.72
NGC 4565	-	19.01	25.92	13.19	13.18	651.34	2.83
13000812 ± 2758370	Coma	19.24	27.98	107.61	15.23	3132.32	1.67
NGC 1553	Dorado	19.02	-55.78	17.76	13.45	799.85	2.58
NGC 3311	Hydra	19.13	-27.56	48.01	14.42	1687.23	2.01
NGC 4261	-	19.02	5.89	31.61	13.95	1179.31	2.14

Neutrino Search for Galaxy Clusters

