

J-PARC muon experiments now and future

June 16, 2026 Tsutomu Mibe (IPNS / KEK)

Landscape

S-channel production Muon colliders

Quantum loops Lepton moments g-2, EDM, cLFV Atomic spectroscopy muonium, muonic atoms

Enablers Intense muon source Muon cooling Magnet technology

> J-PARC surveys NP in loops and develops enablers for future colliders.

Workshop on future colliders with muons 3

November 2, 2023 https://kds.kek.jp/event/48168/

Fig. 1. Conceptual design of the $\mu^+ e^-/\mu^+\mu^+$ collider.

Experimental challenges

Intense muon source

- Efficient pion / muon capture
- $10^7 \,\mu/\text{sec}$ (conventional)
- $10^{13} \,\mu/\text{sec}$ for 0.1 ab⁻¹/year

Muon cooling

- Large phase space due to tertiary beam
- Normalized emittance = 1,000 π mm mrad (conventional)

 1π mm mrad (muTRISTAN $\mu\mu$)

- Magnet technology
 - $B = E_{CM}/(2x0.3\rho) = 7 T$ for $E_{CM}=2$ TeV in a 2km ring

History of accelerator technology

J-PARC : Japan Proton Accelerator Research Complex

3 proton accelerators and 3 experimental facilities

FNAL g-2 experiment (completed!)

MUON g-2 2025 RESULTS

Contraction

FEFE

J-PARC muon g-2/EDM experiment

The only experiment to test FNAL/BNL g-2 results. g-2 : 450 ppb

EDM : 1.5 E-19 ecm

Status of muon g-2 (June 9, 2025)

International workshop on muon g-2 theory at KEK

The seventh plenary workshop at KEK (Sep 9-13, 2024) https://conference-indico.kek.jp/event/257/

Next workshop at JLC lab, Orsay on Sep, 8-12, 2025

Special presentation on memories of T. Kinoshita

https://indico.ijclab.in2p3.fr/event/11652

Conventional muon beam

Muon beam at J-PARC

Acceleration of thermal muons 16

Efficient Muonium production demonstrated in TRIUMF

Implementation at J-PARC (2023) 18

J-PARC S2 area

Demonstration of acceleration to 100 keV (2024)

Results: time of flight

Results: transverse emittance at 100 keV 21

The birth of low-emittance muon beam

New beamline : MLF H2 area

Dedicated beamline for the muon cooling and acceleration Surface muon rate : 1×10^8 /sec

New beamline : MLF H2 area

Next step: Acceleration to 4 MeV

Currently, the cavity is located at J-PARC LINAC.

Future: acceleration to 210 MeV

Disk And Washer (DAW) (from 4 MeV to 40 MeV)

Disk Load Structure (DLS) (from 40 MeV to 210 MeV)

Evolution of emittance

Muon g-2/EDM : intended schedule

Searching for µ-e conversion at J-PARC

+ The final goal: **O(10-17)** sensitivity.

- ★ 10,000× improvement over the current limit.
- Dedicities cility and muon transport line being const
 Ian: Phase-I and Phase-II

tivity O(10⁻¹⁵) sic measurement by cylindrical detectors 'CyDet' Beam & BG measurement by a tracker & calorimeter 'StrECAL' slide by K. Oishi

✓ Sens

Physic measurement

by StrECAL

Reused

COMET Fac

slide by K. Oishi

Pion production target

28

Sensitivity O(10-15)

- $\pi \rightarrow \mu$ in the transport solenoid.
- CyDet combining with the muon stopping targets,
 - *** CDC**: Cylindrical Drift Chamber (momentum)
 - * **CTH**: Cylindrical Trigger Hodoscope (time and trigger)
- Cosmic Ray Veto surrounding the CyDet

Beam profile & beam-related BGs

Measured by the Phase-II detector: StrECAL.

90° Muon Transport Solenoid

Proton beam

Instantion of capture solenoid 30

November 2024 @ J-PARC

MET : schedule

Single Event Sensitivity (SES) Phase-I

+ Estimated 3×10-15 for 150 days operation.

$$B(\mu^- + \text{Al} \to e^- + \text{Al}) = \frac{1}{N_\mu \cdot f_{\text{cap}} \cdot f_{\text{gnd}} \cdot A_{\mu-e}} = 3 \times 10^{-15}$$

1

* $N_{\mu} = 1.5 \times 10^{16}$: the number of muons stopped in the target

 f_{cap} = 0.61 : the fraction of captured muons to total muons on target 20.1.5 Net Signal Acceptance
 f_{gnd} = 0.9 : the fraction of μ-e conversion to the ground state in the final state 10¹⁰ muon/sec 10⁹ muon stop/sec

* AThes **Q.P4** hethe methematic for the deconversion signal (seef b4 $\rho_{\mathcal{V}}$) = 0.041 is of ns and T_2 =1170 ns, where appropriate numbers of the online event selection (see Sec. n 16.1.3), the offline track finding efficiency (See Section 13.5.1) and DAQ efficience and T_1 muon/sec sidered. The breakdown of the acceptance is shown in Table **Phase-II ~10^{11 muon/sec ~10^{10 muon stop/sec**}

Event selection	Value	Comments	
20215 e event selection efficiency	2927	Section 16.1. 2028~	
Beam line & Sulenoids	0.9		
Track finding efficiency	0.99	Section 13.5.1	
Geometrical acceptance + Track quality	y cuts 0.18	Sensitivity of 10 ⁻¹⁵	
Momentum window ($\varepsilon_{\rm mom}$)	CO.93 ^{cen} 103.6 Runs	$MeV/c < P_e < 106.0 MeV/c$	
Timing window $(\varepsilon_{\text{time}})$	P 10.3	700 ns < t < 1170 ns	
Total	- · · · · · · · · · · · · · · · · · · ·		→ Phase-I

Table 20.2: Breakdown of the $\mu - e$ conversion signal acceptances.

Summary

- J-PARC will start to survey NP in dipole moments and cLFV in coming years.
- J-PARC will deliver enablers for future facilities.
- Intense muon source
 - $10^7 \,\mu/\text{sec}$ (conventional)
 - 10¹⁰ μ/sec (COMET Phase-I, 2028)
 - $10^{13} \,\mu/\text{sec}$ for 0.1 ab⁻¹/year
- Muon cooling
 - Large phase space due to tertiary beam
 - Normalized emittance = 1,000 π mm mrad (conventional)

 1π mm mrad (200 MeV, g-2/EDM, 2030)

but, only positive μ ... 1π mm mrad (muTRISTAN $\mu\mu$, 1 TeV)