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Why are we interested in CP properties of Higgs boson?

e Test of SM: if we find the observed scalar is not pure CP-even eigenstate,
that’s a hint for new physics



How to test the CP violation at the LHC?

e If extra scalar discovered, top associated production can be used
(ttH coupling is sensitive to CP-even vs -odd contributions)

e Angular momentum correlation in H; — ZZ — 4pu
(hard/impossible at HL-LHC, because loop-induced CP-odd contributions suppressed)

e Three peaks in the four leptons channel (Only True in the 2HDM)

e Angular correlation between tau leptons decay planes Q




Methodology

Parametrization of Higgs boson coupling to taus:
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0 is the CP-mixing angle

> (.= 0° represents purely CP-even Higgs
> 0= 90° represent purely CP-odd Higgs



Methodology

From the angle, define a variable to be measured at the LHC

Observable we use is the coplanarity angle between the Tau decay planes

angular correlation in the decay width X 1408.0798 [hep-ph
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https://arxiv.org/abs/1408.0798

Methodology

acoplanarity plane can be reconstructed from decay products
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figure taken from 2212.05833

One visible particle from the Tau decays Two visible particle from the Tau decays Mixed Tau decays



Methodology

Impact Parameter method is applied when Tau decays tfo a single visible pion
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Impact parameter vector is the closest distance between
the primary vertex and the pion direction



Methodology
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study three T decay modes:
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main background: Z/y decays to T pairs

all processes simulated using MadGraph + Pythia + Delphes and checked against

constraints

Br(7— — 77 v) = 10.8% Br(t— — p7v) = 25.49% Br(r— — 7 27%) = 9.26%



Methodology

Acoplanarity angle distribution, MG+Pythia+Delphes
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To keep the angular correlation in the Tau decay products, TauDecay library is used (1212.6247)



Methodology

Current status of the CPV searches at the LHC

ATLAS and CMS have both performed such analyses using traditional

cut-and-count and boosted decision trees

do well in excluding purely CP-odd Higgs

not great at actually measuring CP angle

Model hypothesis, the mixing angle ¢, i1s measured to b& 9° + 16°) with an expected value of
0° + 28" at the 68% confidence level. The pure C P-odd hypothesis 1s distavoured at a level of

3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in
the Standard Model.

Without constraining the H — 77 signal strength to its exi ected value under the Standard
.90

ATLAS 2212.05833



Deep Learning analyses

use three Deep Learning Neural Networks to increase signal-to-background vyield:

1.  Multi-Layer Perceptron (MLP)
2. Graph Neural Network (GNN)
3. Graph Transformer Network (GTN)

Our codes are made for public, for reproducibility purpose

https://github.com/wesmail/HiggsCP



Multi-Layers perceptron

o Output
e feed-forward neural network consisting of e

iInputs
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o Input layer zzg“){
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e neurons are fully connected npul Hidden

Layer Layer

o one or more hidden layer(s)

o output layer

Output
Layer

e adept at analyzing high-level kinematic events



Multi-Layers perceptron

e we use 17 input variables:

o m,n,¢, E,pT of two leading T1 jets and T-pair

O missing energy

o acoplanarity angle ¢*

e stack signal and background separately

e train with 80000 signal and background events each

e use 20000 events for evaluation during training o =T
Limitations: e e

identification performance limited due to fully connected neurons in each hidden layer
——> dilutes learned CP pattern by fully connecting it to kinematics

——>graph neural networks (GNN) can overcome this by using heterogeneous graphs



Graph Neural Network

analyze graph-like structures, typically

e nodes represent final states, fully connected
e nodes weighted with 4-momenta of final states

e edges weighted with angular distance between final states

——> not easy to incorporate Higgs CP properties

—> use heterogeneous graphs

homogeneous graphs:

e single type of nodes and edges

heterogeneous graphs:

e multiple types of edges and nodes with different properties and
relationships

e can accurately model complex systems, e.g. topology of Higgs decay
events




Graph Neural Network

- Node name Features
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This structure is considered as a prior to separate between
the kinematic and CP observables.



Graph Transformer Network

combines traditional GNN and transformers
——> more powerful & flexible framework for analyzing graphs

attention mechanism enables selective focus on different nodes (e.g. here pion
nodes vs tau nodes)

self attention mechanism
Q- -K'
Vi,

edge-wise attention mechanism

with query Q and key K

attention matrix «;; =
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Graph Transformer Network

Multihead attention enables the model to learn rich,
fopological-aware representations by attending to different
aspects of a node’s neighborhood simultaneously.

Each aftention head captures distinct structural or semantic
relationships, allowing the model to weigh neighbor contributions
dynamically based on their features. This leads to more expressive
and flexible learning compared to traditional GNNs,
and it enhances both performance and interpretability
on graph-based tasks.
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AUC: to the area under the ROC
curve. It is a metric used to evaluate
the performance of binary classification
models.

0.84-

0.82

Selection cuts MLP(TPR> 0.8) GCN(TPR> 0.8)

25 50 75

GTN(TPR> 0.8)

Background events 872554 14982 8901 6169
Signal events 1102 703 705 708
Signal significance 2.90 5.60 120 8.60




Results: Shape analysis
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Acoplanarity angle distribution after optimizing the cut over
the nefwork output probability.



Results: Shape analysis

HL-LHC, /5 = 14 TeV, £ = 100 fb"
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Results: Interpretation

Shapley Additive Explanations (SHAP) is a model-agnostic method that assigns each
feature a contribution value to explain individual predictions. It ensures fair and consistent attribution by
averaging a feature's impact over all possible combinations of features.
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e testing CP properties of Higgs is important to confirm SM and could possible
be a hint for new physics

e using neural networks improves signal to background yield allowing better
measurements

e heterogeneous graphs can describe complex topologies

e GTN allows flexible and powerful framework to analyze such complex
topologies and can significantly improve measurements of CP properties at
HL-LHC
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