A workshop on the Frontier of Particle Physics: Exploring Muons, Quantum Science and the Cosmos at Kyoto

Progress of DarQ experiments

June 16, 2025 KEK, QUP Tatsumi Nitta

Wavelike Dark Matter (DM)

Most of physicists believe Dark Matter Exists!

But… mass of DM is totally unknown

 $10^{-6} eV (\mu eV)$ 1 $10^{12} eV (TeV)$

*d*_{nearest neighbor}

 $\ll \lambda_{\rm de Broglie}$ ~ 100 m

Wavelike DM

- Axion
- Dark Photon etc

d_{nearest neighbor}

 $\gg \lambda_{\rm de Broglie}$

~ 0.1 nm

Particle-like DM

- WIMP etc

Standard Detection Method

1. put a converter on the Earth

Metal surface

- Cavity
- Dish antenna

2. DM -> photon conversion

Dark Photon –

This process happens continuously

3. photon detection

Axion Hunting So Far

DFSZ sensitivity

- ADMX
- CAPP

 \rightarrow Probability of discovery is too low, so far Big money (huge magnet etc) "partially" solves problems

New ideas and technologies are necessary for discovery

We are investigating possibilities of superconducting qubits

Superconducting Qubits

manipulatable

→ quantum computer

<u>Good points as DM sensor</u>

- Large Electric Dipole Moment ~ $10^6 \times \text{single atom}$ \rightarrow Very sensitive to ambient electric field - $|0\rangle \rightarrow |1\rangle$ energy ~ GHz ~ μeV \rightarrow Hot spot of wavelike DM - Working at mK temperature \rightarrow Low fake signals **Designable circuit**

 \rightarrow Any desired sensors can be made

in principle

DarQ: Dark matter search using Qubits

UTokyo ICEPP

Toshiaki Inada

Yuya Mino

UTokyo **Moroi Lab**

Takeo Moroi

Thanaporn Sichanugrist

Karin Watanabe

Kan Nakazono

Chikara Kawai

Yutaro liyama

Koji Terashi

Junichi Tanaka

Hajime Fukuda

Atsushi Noguchi

Shion Chen

KEK QUP

Tatsumi Nitta

Shotaro Shirai

Tetsuro Nakagawa

Founded at U Tokyo \rightarrow now expanding (decaying) to several institutes

DarQ homemade qubits

Qubits for

quantum computing

Acknowledge to cleanrooms at U Tokyo, Kyoto U, OIST, EPFL, and U Chicago

DarQ experimental site

Current site at **U** Tokyo

(shared facility)

Now building new experimental setup at QUP

- 3 times larger fridge
- DarQ is the primary user
- Complete set of
 - equipments will be
 - delivered in December
 - \rightarrow We will conduct a
 - O(month) period of
 - data-taking

We are forming strong collaboration, elaborated fabrication recipe, and permanent experimental site

Cryo-Facility @Fuji Hall (B4)

DarQ experiments **DarQ-Lamb DarQ-Direct** As DM antenna As cavity tuner Zhao+ arXiv 2501.06882 Moroi+ PRL 131, 211001 Thanaporn+ PRL 133, 021801 Nakazono+ arXiv 2505.15619 Thanaporn+ PRD **110**, 115021 (Cavity) (Qubit) 2.0 cm Watanabe+ Patras 2024 Kang+ arXiv 2503.18315 \mathcal{N} 3.8 cm Ø

Dixit+ PRL **126** 141302 Agrawal+ PRL **132** 140801 Zhao+ arXiv 2501.06882

DarQ-SPC As microwave single photon counter

Braggio+ arXiv 2403.02321

DarQ-Lamb idea

Cavity

conventional tuning

- Friction heat
- Additional — Mechanical parts
- Take care of EM leakage

Cavity Interaction Qubit

 $\mathcal{H}/\hbar = \frac{\omega_q}{2}\sigma_z + \omega_c a^{\dagger}a + g(\sigma_+ a + a^{\dagger}\sigma_-)$

 $\mathcal{H}/\hbar = \left(\omega_c + \frac{g^2}{\Delta}\right)\sigma_z/2 + \left(\omega_q + \frac{g^2}{\Delta}\sigma_z\right)a^{\dagger}a$

 $\Delta = \omega_c - \omega_a$

qubit tuning

- No heating
- Only qubit and coil
- No physical
 - connection to
 - outside

Simulation of the tuning

Interaction Maximum

Interaction Minimum

Courtesy of Kan Nakazono

Setup

Coil

Qubit

Copper Cavity

Cavity **B-field shield**

fridge

12

Setup

Similar to quantum computer setup

Sanity Checks $\mathscr{H}/\hbar = (\omega_c + g^2/\Delta)$

 $\mathcal{H}/\hbar = \left(\omega_c + g^2/\Delta\right)\sigma_z/2 + \left(\omega_q + g^2/\Delta\sigma_z\right)a^{\dagger}a$

Courtesy of Kan Nakazono

DarQ-Lamb Result

Variable e	xplanation	value	others		
$m_{\gamma'}$	frequency	$\sim 8.74\mathrm{GHz}$	each measurement		
ρ I	M density	$0.45{ m GeV/cm^3}$	from (Asztalos et al., 2001)		
β coup	oling constant	~ 0.3	each measurement		
T_{sys} sy	vstem noise	$7.9\mathrm{K}$	Y-factor measurement		
V_{eff} effe	ctive volume	$3.14{ m cm}^3$	$V \times form factor$		
Q_L (Loaded	d) Quality factor	~ 5000	each measurement		
η attent	nuation factor	1.02	SG filtering		
$\mid N \mid$ nur	mber of data	100	per measurement		
b h	pandwidth	$200\mathrm{Hz}$	bandwidth of spectrum analyz		

We didn't find DM but searched unexplored parameter space

Please check preprint: arXiv: 2505.15619

Courtesy of Kan Nakazono

R&D for DarQ-Lamb Towards wider tuning range

Larger pads $\rightarrow O(100 \text{ MHz}) \text{ tuning}$

standard qubit

Large gqubit

Galvanic contacts $\rightarrow O(1 \text{ GHz}) \text{ tuning}$

Noguchi+ 2016

$$\mathcal{H}/\hbar = \left(\omega_c + \frac{g^2}{\Delta}\right)\sigma_z/2 + \left(\omega_q + \frac{g^2}{\Delta}\sigma_z\right)a^{\dagger}a$$

Towards higher sensitivity

Aaron et.al.

PRL 126 141302 (2021)

Much better sensitivity would be realized by combining with single photon counting

DarQ-Direct

$$p_{ge} \cong 0.12 \times \kappa^2 \cos^2 \Theta \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{f_{01}}{1 \text{ GHz}}\right) \left(\frac{\tau}{100 \text{ }\mu\text{s}}\right)^2 \left(\frac{\epsilon}{0.45 \text{ GeV/cm}^3}\right)$$

17

Sanity Check Basic checks for $|0\rangle |1\rangle$ discrimination

Courtesy of Karin Watanabe

DarQ-Direct Result

Courtesy of Karin Watanabe

KyotoU HE group R&D for DarQ-Direct

Higher Freq. Qubits

led by Kyoto Group

Shikynot Cheergroup

Tetsurby Nakagawa

 $- \Leftrightarrow > \frac{1}{2} 9.5$

80 100

9.0

20

40

Al film thickness (nm)

60

g N qubits with CNOT gates

 $U_{\rm DM}$

 $U_{\rm DM}$

leads sensitivity increase by N^2

Towards Axion Search

Photon transfer

Pros: Easer, Cons: Potentially lossy

B-field tolerant qubits

Pros: No loss Cons: More difficult

Qubits worked at least 1T

J. Krause et.al., Phys. Rev. Applied 17, 034032 (2022)

All-nitride qubits

We are collaborating with NICT / FNAL people

T. Polakovic, APL Materials 6 (2018) 076107

NbN 240 nm film

Nitride has high Tc2 \rightarrow We don't have to care about critical field

High Q / B-field Resilient Cavity

Needs:

1. DM searches

Everyone needs high Q cavity in B-field

2. bosonic quantum computing

3. Electron Spin based Quantum Device

Kubo+, arXiv:2403.08458

Low power superconducting cavity at 10 mK isn't explored so much

- Nb cavity machined/treated at KEK (we achieved Q>10⁷@7GHz already)
- Higher Q cavity with different material
- Nb3Sn for B-field Resilient

Takayuki Kubo (KEK)

cavity theory expert

Hayato Ito (KEK)

Nb3Sn cavity expert

Yuimaru Kubo (OIST)

Quantum Technology expert

Summary & Prospect

Dark matter search using Qubits

Superconducting qubit is a promising technology for DM search

- Ongoing experiments
 - DarQ-Lamb DM search with cavity tuning by qubits \rightarrow First result on arXiv
 - DarQ-Direct DM search with direct excitation of qubits
 - \rightarrow Aiming to publish the first result in this year
- Future R&D for Large coupling/High frequency/B-field resilient qubits
 - → Aiming to search axion/dark photon parameter spaces
 - around GHz comprehensively

- We are forming
- Strong collaboration (Tokyo, Kyoto, Riken, KEK)
- Elaborated fabrication recipe
- Permanent experimental site at QUP

