Undulators as axion/dark photon factories

@2025/6/19, The Frontier of Particle Physics: Based on WY, J. Yoshida, 2408.17451 WY, in preparation Exploring Muons, Quantum Science and the Cosmos Wen Yin (Tokyo Metropolitan University)

Contents

- Introduction
- 2. Undulator axions
- 3. Undulator dark photons (Preliminary)
- 4. Conclusions

Introduction

Axion (Axion-like particle)

 $\mathscr{L}_{\text{int}} = -\frac{g_{\phi\gamma\gamma}}{\Lambda}\phi\epsilon^{\mu\nu\delta\epsilon}F_{\mu\nu}F_{\delta\epsilon} = -g_{\phi\gamma\gamma}\phi\overrightarrow{E}\cdot\overrightarrow{B}$

- strong CP, etc.
- pseudo-Nambu-Goldstone boson.
- effects and scales exponentially.

explains the dark matter, the inflation, and/or

e.g. Daido, Takahashi, WY <u>1702.03284</u>; Narita, Takahashi, WY, <u>2308.12154</u>; Takahashi WY <u>2301.10757</u> etc for ``and".

appears as a remnant of extra dimension, or as a

mass is generated with some non-perturbative

Search of light axions with axion-photon conversion Laboratory produced axion To be discussed

Search of light axions with axion-photon conversion Laboratory produced axion

- Both production and detection are conducted in laboratories.
- Usually weaker limit. c.f. ALPS-II
- Less systematics and thus more robust. There is also a series of models that can only be probed in laboratories. Masso and Redondo, 0504202; Jaeckel et al. 0610203; Brax, 0703243
- Only detection is conducted in laboratories.
- Usually stronger limit.
- More systematics usually exist. Astrophysically produced axion Cosmologically produced axion

Search of light axions with axion-photon conversion Laboratory produced axion

- Both production and detection are conducted in laboratories.
- Usually weaker limit. c.f. ALPS-II
- Robustness Less systematics and thus more robust. There is also a series of models that can only be probed in laboratories. Masso and Redondo, 0504202; Jaeckel et al. 0610203; Brax, 0703243
- Only detection is conducted in laboratories.
- Usually stronger limit.
- More systematics usually exist. Astrophysically produced axion Cosmologically produced axion

Sensitivity

Search of light axions with axion-photon conversion • Laboratory produced axion

- Both production and detection are conducted in laboratories.
- Usually weaker limit. c.f. ALPS-II
- Less systematics and thus more robust. There is also a series of models that can only be probed in laboratories. Masso and Redondo, 0504202; Jaeckel et al. 0610203; Brax, 0703243
- Only detection is conducted in laboratories.
- Usually stronger limit.
- More systematics usually exist.
 Astrophysically produced axion

Axion factory

See also experiments of vacuum birefringence, and laser collider experiments: DellaValle:2015xxa, SAPPHIRES:2022bqg

Optical Laser as light source

Ehret et al, <u>1004.1313</u>

The ALPS Collaboration @ DESY

- Light axion search by optical laser
- 5Tesla * 4.3m * 2sections

Upgraded ALPS II has 5.3Tesla * 120m * 2sections ALPS II will run by O(years). It will obtain a very powerful bound. Taken (and modified) from J. Yoshida-san's slide

Undulator as (X-ray) light source

ICEPP, UT group @ SPring-8 BL19LXU

- 9.5 keV X ray for relatively heavy axion
- 14.1Tesla * 20cm * 2coils * 2sections
- Net 2 days operation (28,000 excitations * 1msec)

Optical Laser as light source

Undulator as (X-ray) light source

Optical Laser as light source

Undulator as (X-ray) light source

Optical Laser as light source

Ehret et al, <u>1004.1313</u>

The ALPS Collaboration @ DESY

- Light axion search by optical laser
- 5Tesla * 4.3m * 2sections

Upgraded ALPS II has 5.3Tesla * 120m * 2sections ALPS II will run by O(years). It will obtain a very powerful bound. Taken (and modified) from J. Yoshida-san's slide

Undulator as (X-ray) light source

ICEPP, UT group @ SPring-8 BL19LXU

- 9.5 keV X ray for relatively heavy axion
- 14.1Tesla * 20cm * 2coils * 2sections
- Net 2 days operation (28,000 excitations * 1msec)

Optical Laser as light source

Taken (and modified) from J. Yoshida-san's silde

Undulator as (X-ray) light source

What is undulator?

- Intense and concentrated line-like photons.
- Controllable photon energy and polarization.
- •Used in synchrotron radiation facilities (NanoTerasu, Spring-8, and KEK photon factory (PF) etc.), free-electron laser, and in the design of ILC, etc

What is undulator?

- Intense and concentrated line-like photons.
- Controllable photon energy and polarization.
- ·Used in synchrotron radiation facilities (NanoTerasu, Spring-8, and KEK photon factory (PF) etc.), free-electron laser, and in the design of ILC, etc

Modeling the undulator and electron motion $\boldsymbol{\chi}$ $\vec{B}_{\text{ext}} = B_0\{\cos[kz], \kappa \sin[kz + \phi], 0\}.$ $\overline{}$ e z. $2\pi/k$ $\vec{\beta} \simeq \left(-\frac{K\kappa}{\gamma} \cos[k\beta^z t_e + \phi], -\frac{K}{\gamma} \sin[k\beta^z t_e], -\frac{K}{\gamma} \sin[k\beta^z t_e] \right)$

With $K \leq 1$, it is called undulator. ($K \gg 1$ is called Wigler.) $\kappa = 1, \phi = 0$ Helical undulator

 $\kappa = 0$ Linear undulator(Fig)

$$\beta^z \end{pmatrix}, \qquad \beta^z \simeq \sqrt{1 - \gamma^{-2} \left(1 + \frac{1}{2} (1 + \kappa^2) \mathbf{k}^2 \right)},$$
$$\mathbf{k} \equiv \frac{B_0 e}{k m_e}.$$

Synchrotron radiation for particle theorist: QFT Approach, c.f. textbooks

- (1)Draw Feynman Diagram
- (2)Calculate the amplitude

By expanding K/γ and seeing the leading term, we get

$$\sqrt{2w_{\gamma}} \frac{\operatorname{out}\langle\gamma,\epsilon,k_{\gamma} \mid 0_{j}\rangle_{\operatorname{in}}}{\pi} \simeq i \frac{eK}{2k\gamma} \left(k \left(\kappa e^{-i\phi} \epsilon^{x} + i\epsilon^{y} \right) + \right) \right)$$

(3) Estimate photon production

$$\frac{dn}{d\Omega} \equiv \int \frac{dk_{\gamma}k_{\gamma}^2}{(2\pi)^3} \sum_{\epsilon} |\langle \gamma, \epsilon, \vec{k}_{\gamma} | 0_j \rangle|^2 \approx \frac{L}{\beta^z} \frac{e^2 K^2 k \beta_z}{16\pi^2 \gamma^2} \frac{1}{(1 - \cos \theta \beta^z)^2} \left(1 - \frac{M}{2}\right)^2$$

Agreeing with the conventional estimation!

• Forward direction $< 1/\gamma$ $w_{\gamma} = \frac{k\beta^z}{1 - \beta^z \cos\theta} \simeq 2k\gamma^2$

(from delta-like function)

Is an undulator axion factory? Axion factory Wall Axion detector

- Light source
- Magnets

Is an undulator axion factory? Axion factory Wall Axion detector Magnet e а Detector

Production Side

- Light source
- Magnets

Sheild for facility

Regeneration Side **Battesti et al Physics Reports 765-766(15)**

An undulator in use satisfies the more than half of the condition of LSW

Is an undulator axion factory? Axion factory Wall Axion detector

Production Side

- Light source
- Magnets

Regeneration Side **Battesti et al Physics Reports 765-766(15)**

An undulator in use satisfies the more than half of the condition of LSW

If an undulator is an axion factory,

WY, Junya Yoshida, arXiv:2408.17451

If an undulator is an axion factory, we have a super low cost strategy: Install an 'axion detector' and wait!

WY, Junya Yoshida, arXiv:2408.17451

Case of NanoTerasu,

BL14U beam line

- Photon beam spread $\Delta\theta \sim 1/10^4$
- . Distance to sweet spot O(10m)
- Detector with scale $\gg 10m \times 1/10000 \sim 1mm$ will cover the interesting directions.

J. Yoshida, WY, preliminary

Case of NanoTerasu,

BL14U beam line

- Photon beam spread $\Delta\theta \sim 1/10^4$
- . Distance to sweet spot O(10m)
- Detector with scale $\gg 10m \times 1/10000 \sim 1mm$ will cover the interesting directions.

J. Yoshida, WY, preliminary

2. Undulator Axions

Based on WY, J. Yoshida, 2408.17451

Let us take the QFT approach $\mathscr{L}_{\text{int}} = -g_{\phi\gamma\gamma}\phi \overrightarrow{E} \cdot \overrightarrow{B}_{\text{ext}} - J_{\mu}^{\text{background}}A^{\mu}$

- (1) Draw Feynman Diagram
- (2)Calculate the amplitude

 $\langle \phi, k_{\phi} | 0_{jB} \rangle = \frac{g_{\phi\gamma\gamma}}{\sqrt{2w_{\phi}}} \int d^4x d^4y e^{i(w_{\phi}t - \vec{k}_{\phi}\vec{x})} \sum_{l} B^l_{\text{ext}}(x) \left(\partial_0 \Delta_{l\mu}(x, y) - \partial_l \Delta_{0\mu}(x, y)\right) j^{\mu}(y).$

Neglecting terms $\delta_X(x)$ with $x \gg 2\pi/X$.

 $\frac{\langle \phi, k_{\phi} | 0_{jB} \rangle}{g_{\phi\gamma\gamma} B_0} \simeq \frac{e(k_{\phi}^x + i\kappa k_{\phi}^y \exp(-i\phi))}{2\sqrt{2w_{\phi}} \left(\gamma^{-2} w_{\phi}^2 / \beta^z + k_{\phi,x}^2 + k_$ $eKe^{-2i\phi}\left(\kappa k_{\phi}^{x}+ik_{\phi}^{y}e^{i\phi}\right)\left(k_{\phi}^{x}e^{i\phi}+i\kappa k_{\phi}^{y}e^{i\phi}\right)\left(k_{\phi}^{x}e^{i\phi}+i\kappa k_{\phi}$ $8\gamma k\sqrt{2w_{\phi}}\left(-w_{\phi}^{2}+(w_{\phi}-k\beta^{z})^{2}\beta_{z}^{-2}+k_{\phi}^{2}\right)$

$$l=x.y.z$$

$$\frac{1}{k_{\phi,y}^2} \delta_{\frac{L}{\beta^z}} \left(w_{\phi} - \beta^z (k + k_{\phi}^z) \right)$$

$$\frac{k_{\phi}^y}{k_{\phi,y}^y} \delta_{\frac{L}{\beta^z}} \left(w_{\phi} - \beta^z (2k + k_{\phi}^z) \right), + O(K^2)$$

(3) estimate axion production (with massive axion)

 $k^2 \lesssim m_\phi^2 \lesssim \frac{-k^2 + 3k^2\beta^z}{1 - \beta^z},$

(3) estimate axion production (with massive axion)

$$k^{2} \lesssim m_{\phi}^{2} \lesssim \frac{-k^{2} + 3k^{2}\beta^{z}}{1 - \beta^{z}},$$

$$m_{\phi} \sim k\gamma$$

$$n_{\phi}^{\text{reso}} \simeq g_{\phi\gamma\gamma}^{2} B_{0}^{2} L^{2} e^{2} \frac{K^{2}}{512\pi} \frac{m_{\phi}^{2}}{k^{2}\gamma^{2}},$$

$$k_{\phi} \simeq \frac{m_{\phi}^{2}}{2k}, \ \cos \theta \simeq 1 - \frac{2k^{2}}{m_{\phi}^{2}} + \frac{1 + \frac{1 + \kappa^{2}}{2}K^{2}}{2\gamma^{2}},$$

$$10 \qquad 100^{6}$$

(3) estimate axion production (with massive axion)

Heavy mass range with resonance can exceed existing limits from the laboratory.

WY, J. Yoshida, 2408.17451

NanoTerasu-like undulator assumed for axion factory

4events

O(days)vs O(years)

3. Undulator dark photons

WY, Preliminary

Dark Photon Model

$$\Delta \mathcal{L} \supset -\frac{\chi}{2} F_{\mu\nu}^{\text{dark}} F^{\mu\nu}$$

- One of the simplest extensions of Standard Model.
- Dark photon couples to electron via the mixing with ordinary photon: $e_{\text{dark}} = \chi e$.
- Photon-dark-photon oscillation occurs similar to neutrino.
- =>LSW without a magnet

See e.g. Jaeckel, Ringwald, 1002.0329

$$\frac{1}{4} F^{\mu\nu}_{\text{dark}} F^{\text{dark}}_{\mu\nu} - \frac{m_{\gamma'}^2}{2} A^{\text{dark}}_{\mu} A^{\mu}_{\text{dark}}$$

we have an extremely low cost strategy: Install an 'photon detector' and wait!

Dark photon mass (eV)

Undulator prospects (by using known formulas)

 $P_{\gamma-\gamma'} = 16\chi^4 \left(\sin\left(\frac{\Delta kL_1}{2}\right) \sin\left(\frac{\Delta kL_2}{2}\right) \right)^2 \qquad n_{\gamma,signal} = P_{\gamma-\gamma'}n_{\gamma}, \quad \Delta k = E_{\gamma} - \sqrt{E_{\gamma}^2 - m_{\gamma'}^2} \sim m_{\gamma'}^2/2E_{\gamma}$

When

 $m_{\gamma'} \gtrsim k\gamma \to m_{\gamma'}^2 / E_{\gamma} \gtrsim k$ the production of heavy mode is suppressed.

Undulator prospects (by using known formulas)

$$P_{\gamma-\gamma'} = 16\chi^4 \left(\sin\left(\frac{\Delta kL_1}{2}\right) \sin\left(\frac{\Delta kL_2}{2}\right) \right)^2 \qquad n_{\gamma,si}$$

Detail analysis is very important 0.0 to understand this simple quantum ¹⁰system! χ10⁻⁵ 10⁻⁶ 10⁻⁷ 10^{-8} 0.001 0.010 0.100 Dark photon mass (eV)

 $_{signal} = P_{\gamma - \gamma'} n_{\gamma}, \quad \Delta k = E_{\gamma} - \sqrt{E_{\gamma}^2 - m_{\gamma'}^2} \sim m_{\gamma'}^2 / 2E_{\gamma}$ **Caveats:**

 Asymptotic mass eigenstates should be considered for

• When

 $m_{\gamma'} \gtrsim k\gamma \to m_{\gamma'}^2 / E_{\gamma} \gtrsim k$ the production of heavy mode is suppressed.

To study in more detail let me assume an ideal setup. (For more realistic case, the right volume is not

dificed Setup. (For more realistic case, the right volume is not vacuum, and ``detector" may lose sensitivity for certain heavy m_{γ} .)

Calculation strategy, and some results (For more detail, ask me!)

Conclusions: Undulators are axion/dark photon factories!

A sustainable and coexisting strategy: Install an 'BSM detector' out of the experimental hatch and wait!

- Less time/space restriction.
- More (would-be) photons since we do not filter them.

More theoretical/experimental studies are needed. If you are interested in, feel free to join us!

Each relativistic electron passing through the undulator, we have

Undulator photons

Various textbooks $0.50 \qquad e^{2}kK^{2}$ $n_{\gamma} \simeq L \frac{e^{2}kK^{2}}{6\pi}$

- $\theta \rightarrow 0$ direction is dominant.
- *K*² term dominates.

0.92

0.010.90

- $\theta \rightarrow 0$ direction is suppressed. • K⁰ term, i.e. Coulomb
- contribution, dominates.

0.98

0.96

0.94

 $\frac{1}{100}$

Symmetry of (helical) undulator system

fields invariant.

A conserving charge (with $L \rightarrow \infty$):

Consider the transformation leaving `vacuum' with the background

Understanding from symmetry

A

Any particle produced from the helical undulator has

$$-\mathbf{w}_{i} + \beta_{z}\mathbf{p}_{i}^{z} + \beta^{z}\mathbf{k}(\mathbf{s}_{i}^{z} - \mathbf{Undulator Photon})$$

$$w_{\gamma}(1 - \cos\theta\beta^{z}) = \beta^{z}k(\mathbf{1} + l_{\gamma}^{z})$$

$$\therefore \theta = 0 \text{ allowed}$$
Nothing but the arguments of the "delta functions"

$$\mathscr{L}_{\rm int} = -J_{\mu}A^{\mu}$$

At $K \to 0$, the electron moves straight, we have additional accidental symmetry. $\hat{\tilde{Q}} \equiv -\hat{H} + \beta^z \hat{P}^z$ **Accidental** which is never satisfied. symmetry

 $= K^0$ contribution is forbidden.

$\beta^{\mathbf{Z}}\mathbf{k}(\mathbf{s}_{\mathbf{i}}^{\mathbf{Z}}+\mathbf{l}_{\mathbf{i}}^{\mathbf{Z}})=\mathbf{0}$ Undulator Axion Spin

 $w_{\phi}(1 - \cos \theta \beta^z) = \beta^z k(0 + l_{\phi}^z)$ $\therefore \theta \neq 0$

->Measurement of spin!

$$\mathscr{L}_{\text{int}} = -g_{\phi\gamma\gamma}\phi\overrightarrow{E}\cdot\overrightarrow{B} - J_{\mu}A^{\mu}$$

At $K \to 0$, we do not have accidental symmetry due to $\overrightarrow{B}_{ext} \neq 0$.

No symmetry forbids Coulomb Contribution.

$$\partial^{\mu}F_{\mu\nu} = J_{\nu}$$

 $\overrightarrow{B} = \frac{\overrightarrow{R}}{R} \times \overrightarrow{E}$

(3) Electromagnetic field

(5) Power of radiation

 $\frac{dP}{d\Omega} = R^2 \vec{S} \cdot \frac{\vec{R}}{R} \frac{dt}{dt_R} = \frac{e^2 \vec{a}^2}{16\pi^2} \frac{1}{(1 - \beta \cos \theta)^3} \left(1 - \frac{\gamma^{-2} \cos^2 \theta'}{(1 - \beta \cos \theta)^2} \right).$

(1) Maxwell equations (2) Delayed vector potential

$$A_{\mu}(\vec{x},t) = \int d^{3}x' \frac{1}{|\vec{x}' - \vec{x}|} j_{\mu} \left(\vec{x}', t - |\vec{x}' - \vec{x}|\right)$$

(4)Poynting vector, $\vec{S} = \vec{E} \times \vec{B}$

At large R the dominant contribution is

$$\vec{S} = e^2 \frac{\vec{a}^2}{16\pi^2 R^2} \frac{b^2 - \gamma^{-2} \cos^2 \theta'}{b^6} \frac{\vec{R}}{R}$$

(6) Electron motion+approximations:

$$\frac{dP}{d\Omega} = \frac{e^2 K^2 k^2 \beta^2}{16\pi^2 \gamma^2} \frac{1}{\left(1 - \beta \cos \theta\right)^3} \left(1 - \frac{\gamma^{-2} \sin^2 \theta}{2 \left(1 - \beta \cos \theta\right)^2}\right)$$

(1) Maxwell equations

 $\partial^{\mu}F_{\mu\nu} = J_{\nu}$

(3) Electromagnetic field

 $-\vec{E} = \frac{e(1-\beta^2)}{4\pi R^2 b^3} \left(\frac{\vec{R}}{R} - \vec{\beta}\right) + \frac{e}{4\pi R b^3} \frac{\vec{R}}{R} \times \left\{ \left(\frac{\vec{R}}{R} - \vec{\beta}\right) \times \dot{\vec{\beta}} \right\},$ **Coloumb term** ~ $O(K^0)$ $\overrightarrow{B} = \frac{\overrightarrow{R}}{\overrightarrow{E}} \times \overrightarrow{E}$ (5) Power of radiation $\frac{dP}{d\Omega} = R^2 \vec{S} \cdot \frac{\vec{R}}{R} \frac{dt}{dt_R} = \frac{e^2 \vec{a}^2}{16\pi^2} \frac{1}{(1 - \beta \cos \theta)^3} \left(1 - \frac{\gamma^{-2} \cos^2 \theta'}{(1 - \beta \cos \theta)^2} \right).$

(2) Delayed vector potential

$$A_{\mu}(\vec{x},t) = \int d^{3}x' \frac{1}{|\vec{x}' - \vec{x}|} j_{\mu} \left(\vec{x}', t - |\vec{x}' - \vec{x}|\right)$$

(4)Poynting vector, $\vec{S} = \vec{E} \times \vec{B}$

At large R the dominant contribution is

$$\vec{S} = e^2 \frac{\vec{a}^2}{16\pi^2 R^2} \frac{b^2 - \gamma^{-2} \cos^2 \theta'}{b^6} \frac{\vec{R}}{R}$$

(6) Electron motion+approximations:

$$\frac{dP}{d\Omega} = \frac{e^2 K^2 k^2 \beta^2}{16\pi^2 \gamma^2} \frac{1}{\left(1 - \beta \cos \theta\right)^3} \left(1 - \frac{\gamma^{-2} \sin^2 \theta}{2 \left(1 - \beta \cos \theta\right)^2}\right)$$

(1) Maxwell equations

 $\partial^{\mu}F_{\mu\nu} = J_{\nu}$

(3) Electromagnetic field

(2) Delayed vector potential

$$A_{\mu}(\vec{x},t) = \int d^{3}x' \frac{1}{|\vec{x}' - \vec{x}|} j_{\mu} \left(\vec{x}', t - |\vec{x}' - \vec{x}|\right)$$

(4)Poynting vector, $\vec{S} = \vec{E} \times \vec{B}$

At large R the dominant contribution is

$$\vec{S} = e^2 \frac{\vec{a}^2}{16\pi^2 R^2} \frac{b^2 - \gamma^{-2} \cos^2 \theta'}{b^6} \frac{\vec{R}}{R}$$

(6) Electron motion+approximations:

$$\frac{dP}{d\Omega} = \frac{e^2 K^2 k^2 \beta^2}{16\pi^2 \gamma^2} \frac{1}{\left(1 - \beta \cos \theta\right)^3} \left(1 - \frac{\gamma^{-2} \sin^2 \theta}{2 \left(1 - \beta \cos \theta\right)^2}\right)$$

(1) Maxwell equations

 $\partial^{\mu}F_{\mu\nu} = J_{\nu}$

(3) Electromagnetic field

(2) Delayed vector potential

$$A_{\mu}(\vec{x},t) = \int d^{3}x' \frac{1}{|\vec{x}' - \vec{x}|} j_{\mu} \left(\vec{x}', t - |\vec{x}' - \vec{x}|\right)$$

(4)Poynting vector, $\vec{S} = \vec{E} \times \vec{B}$

At large R the dominant contribution is

$$\vec{S} = e^2 \frac{\vec{a}^2}{16\pi^2 R^2} \frac{b^2 - \gamma^{-2} \cos^2 \theta'}{b^6} \frac{\vec{R}}{R}$$

(6) Electron motion+approximations:

$$\frac{dP}{d\Omega} = \frac{e^2 \mathbf{K}^2 k^2 \beta^2}{16\pi^2 \gamma^2} \frac{1}{\left(1 - \beta \cos \theta\right)^3} \left(1 - \frac{\gamma^{-2} \sin^2 \theta}{2 \left(1 - \beta \cos \theta\right)^2}\right)$$

(Radiation term)²

Fig. 7: The contour plot of $\partial_{w_{\phi}} \partial_{\cos\theta} \partial_{t_R} n_{\phi}$ in the $\log_{10} w_{\phi} (k\gamma^2)^{-1}$, $\cos\theta$ plane. We set $\gamma = 10, 2\pi/k = 0.5$ mm, $B_0 = 1$ Tesla, $L = 5 \times 2\pi/k$ and $m_{\phi} = 0$. m_e and e are taken to be the realistic values. This corresponds to $K \approx 0.05$.

$$\langle \phi, k_{\phi} | 0_{E,B} \rangle = -i \int d^4x \frac{g_{\phi\gamma\gamma}}{\sqrt{2w_{\phi}}} e^{i\left(-\vec{k}_{\phi} \cdot \vec{x} + w_{\phi}t\right)} \vec{E} \cdot \vec{B}_{\text{ext}},$$

 $\gamma = 6, 2\pi/k = 5$ mm, $B_0 = 1$ Tesla, $L = 3 \times 2\pi/k$ and $m_{\phi} = 0$. m_e and e are taken to be the realistic values. This corresponds to $K \approx 0.5$.

$$\langle \phi, k_{\phi} | 0_{E,B} \rangle = -i \int d^4x \frac{g_{\phi\gamma\gamma}}{\sqrt{2w_{\phi}}} e^{i\left(-\vec{k}_{\phi} \cdot \vec{x} + w_{\phi}t\right)} \vec{E} \cdot \vec{B}_{\text{ext}},$$

= 1 (with
$$\kappa = 1, \phi = 0$$
)

 $\gamma = 6, 2\pi/k = 5$ mm, $B_0 = 1$ Tesla, $L = 3 \times 2\pi/k$ and $m_{\phi} = 0$. m_e and e are taken to be the realistic values. This corresponds to $K \approx 0.5$.

$$\langle \phi, k_{\phi} | 0_{E,B} \rangle = -i \int d^4x \frac{g_{\phi\gamma\gamma}}{\sqrt{2w_{\phi}}} e^{i\left(-\vec{k}_{\phi} \cdot \vec{x} + w_{\phi}t\right)} \vec{E} \cdot \vec{B}_{\text{ext}},$$

= 1 (with
$$\kappa = 1, \phi = 0$$
)

 $\gamma = 6, 2\pi/k = 5$ mm, $B_0 = 1$ Tesla, $L = 3 \times 2\pi/k$ and $m_{\phi} = 0$. m_e and e are taken to be the realistic values. This corresponds to $K \approx 0.5$.

$$\langle \phi, k_{\phi} | 0_{E,B} \rangle = -i \int d^4x \frac{g_{\phi\gamma\gamma}}{\sqrt{2w_{\phi}}} e^{i\left(-\vec{k}_{\phi} \cdot \vec{x} + w_{\phi}t\right)} \vec{E} \cdot \vec{B}_{\text{ext}},$$

= 1 (with
$$\kappa = 1, \phi = 0$$
)

Numerical check

$$k_{\phi} \simeq \frac{m_{\phi}^2}{2k}, \cos \theta \simeq 1 - \frac{2k^2}{m_{\phi}^2} + \frac{1 + \frac{1 + \kappa^2}{2}K^2}{2\gamma^2}.$$
$$\eta^{\text{reso}} = g_{\phi\gamma\gamma}^2 B_0^2 \frac{3\pi L}{128k} f_2 f_1^{-1} \frac{m_{\phi}^2}{\gamma^2 k^2}.$$

Not very small with $m_{\phi} \sim k\gamma$

$$\eta_{\text{LSW}} \sim g_{\phi\gamma\gamma}^2 (B_0 L)^2 \sim \frac{L}{\lambda} \eta_{\text{reso}} = \frac{meter}{O(10)cm} \eta^{\text{reso}}$$
, for conventional LSW.

Fig. 9: The contour plot of $\log_{10}[\partial_{w_{\phi}}\partial_{\cos\theta}\partial_{t_{R}}n_{\phi}]$ in $w_{\phi}(k\gamma^{2})^{-1}$, θ plane, with $m_{\phi} = k\gamma$. We set $\gamma = 10, 2\pi/k = 5$ mm, $B_0 = 1$ Tesla, $L = 6 \times 2\pi/k, m_{\phi} = \gamma k. m_e, e$ are taken to be the realistic values. This corresponds to $K \approx 0.5$.

Axion-photon conversion with magnets $\vec{B}_{ext} = \vec{B}_0 \cos[zk]$ for 0<z<L $_{\text{out}}\langle\phi,k_{\phi}|\gamma,k_{\gamma}\rangle_{\text{in}} \propto g_{\phi\gamma\gamma}\delta^{(3)}(p_{\phi}-p_{\gamma})\int_{0}^{L}dz e^{i(k_{z}-k_{\phi,z})z}i\vec{\epsilon}\cdot\vec{B}_{\text{ext}}$ $\propto g_{\phi\gamma\gamma}\delta^{(3)}(p_{\phi}-p_{\gamma})\delta_{L}(k_{\gamma,z}-k_{\phi,z}\pm k)B_{0}$

 $\delta_I(x)$: Delta-like function with finite volume, $\delta_L(0) \sim \delta_L(\pi/L) \sim L$.

$\mathscr{L}_{int} = -g_{\phi\gamma\gamma}\phi E \cdot B$

k: "Momentum" from Bulk magnetic field

A Resonance?

