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•1. Introduction



Axion (Axion-like particle)

•explains the dark matter, the inflation, and/or 
strong CP, etc. 
•appears as a remnant of extra dimension, or as a 
pseudo-Nambu-Goldstone boson.  
•mass is generated with some non-perturbative 
effects and scales exponentially. 

ℒint = −
gϕγγ

4
ϕϵμνδϵFμνFδϵ = − gϕγγϕ ⃗E ⋅ ⃗B

e.g. Daido, Takahashi, WY 1702.03284; Narita, Takahashi, WY, 2308.12154; 
Takahashi WY 2301.10757 etc for ``and”. 

https://arxiv.org/abs/1702.03284
https://arxiv.org/abs/2308.12154
https://arxiv.org/abs/2301.10757


•Laboratory produced axion 
Search of light axions with axion-photon conversion

• Cosmologically produced axion 

ϕ γ

Bext /Eext
✖

Supernova axion + (extra)Galactic magnetic fields. 
Solar axion + magnets by hand etc

DM axion + magnets/cavity  
by hand, etc

To be discussed

https://cajohare.github.io/AxionLimits

• Astrophysically produced axion  



•Laboratory produced axion 
• Both production and detection are conducted in laboratories. 

• Usually weaker limit. c.f. ALPS-II 

• Less systematics and thus more robust.

• Only detection is conducted in laboratories. 

• Usually stronger limit.  

• More systematics usually exist. 

There is also a series of models that can only be probed in laboratories. 
Masso and Redondo, 0504202; Jaeckel et al.  0610203; Brax, 0703243 
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Sensitivity

Robustness
There is also a series of models that can only be probed in laboratories. 
Masso and Redondo, 0504202; Jaeckel et al.  0610203; Brax, 0703243 

Today’s talk

Search of light axions with axion-photon conversion

• Cosmologically produced axion • Astrophysically produced axion  



Light-Shining-Through-a-Wall (LSW) experiment

Battesti et al Physics Reports 765-766(15)

Sikivie,1983;Anselm,1985;VanBibber,1987;

Axion factory Axion detector

See also experiments of vacuum birefringence, and laser collider experiments: DellaValle:2015xxa, SAPPHIRES:2022bqg

• Light source 
• Magnets 

• Magnets  
• Photon detector

Wall

https://www.researchgate.net/scientific-contributions/R-Battesti-12678010?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0


Ehret et al, 1004.1313

From slide of T. Namba

From DESY’s homepage

Examples of LSW experiments, . k = 0

Taken (and modified) from J. Yoshida-san’s slide

Optical Laser as light source Undulator as (X-ray) light source

ALPS II will run by O(years).  
It will obtain a very powerful bound.

https://arxiv.org/abs/1004.1313


Ehret et al, 1004.1313

From slide of T. Namba

From DESY’s homepage

Examples of LSW experiments, . k = 0

Taken (and modified) from J. Yoshida-san’s slide

Optical Laser as light source Undulator as (X-ray) light source

https://cajohare.github.io/AxionLimits

ALPS II will run by O(years).  
It will obtain a very powerful bound.

https://arxiv.org/abs/1004.1313


Ehret et al, 1004.1313

From slide of T. Namba

From DESY’s homepage

Examples of LSW experiments, . k = 0

Taken (and modified) from J. Yoshida-san’s slide

Optical Laser as light source Undulator as (X-ray) light source

https://cajohare.github.io/AxionLimits

ALPS II will run by O(years).  
It will obtain a very powerful bound.

https://arxiv.org/abs/1004.1313


Ehret et al, 1004.1313

From slide of T. Namba

From DESY’s homepage

Examples of LSW experiments, . k = 0

Taken (and modified) from J. Yoshida-san’s slide

Optical Laser as light source Undulator as (X-ray) light source

ALPS II will run by O(years).  
It will obtain a very powerful bound.

https://arxiv.org/abs/1004.1313


Ehret et al, 1004.1313

From slide of T. Namba

From DESY’s homepage

Examples of LSW experiments, . k = 0

Taken (and modified) from J. Yoshida-san’s slide

Optical Laser as light source Undulator as (X-ray) light source

ALPS II will run by O(years).  
It will obtain a very powerful bound.

Inada et al, 1609.05425

Undulator  
as light source

https://arxiv.org/abs/1004.1313
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What is undulator?

•Intense and concentrated line-like photons. 
•Controllable photon energy and polarization. 
•Used in synchrotron radiation facilities (NanoTerasu, Spring-8, and KEK 
photon factory (PF) etc.), free-electron laser, and in the design of ILC, etc 

γ ≫ 1
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Modeling the undulator and electron motion

e z
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With K ≲ 1, it is called undulator. (K ≫ 1 is called Wigler.)
κ = 1,ϕ = 0

κ = 0 Linear undulator(Fig)
Helical undulator



• (1)Draw Feynman Diagram 

• (2)Calculate the amplitude 

• (3)Estimate photon production

Synchrotron radiation for particle 
theorist: QFT Approach, c.f. textbooks

ℒint = − Aμjμ, jμ = − evμ(t)δ3( ⃗x − ⃗re[t]), vμ = (1, ⃗βe)

2wγ
out⟨γ, ϵ, kγ |0j⟩in

π
≃ i

eK
2kγ (k (κe−iϕϵx + iϵy) + ϵz (κe−iϕkx

γ + iky
γ ) βz) δ L

βz (wγ(1 − βz cos[θ]) − kβz) + O(K2) .

By expanding  and seeing the leading term, we getK/γ

dn
dΩ

≡ ∫
dkγk2

γ

(2π)3 ∑
ϵ

|⟨γ, ϵ, ⃗kγ |0j⟩ |2 ≈
L
βz

e2K2kβz

16π2γ2

1
(1 − cos θβz)2 (1 −

γ−2 sin2 θ + 𝒪(γ−4)
2(1 − cos θβz)2 ) Agreeing with the conventional estimation!

→ wγ =
kβz

1 − βz cos θ

δX(q) ≡ ∫
X

0
dxeiqx



dnγ

dΩ
≈

L
βz

e2K2kβz

16π2γ2

1
(1 − cos θβz)2

0.2 0.4 0.6 0.8 1.0

10

50
100

θ

θ ∼ 1/γ (γ = 3)

• Forward direction  

•  

(from delta-like function)

< 1/γ

wγ =
kβz

1 − βz cos θ
≃ 2kγ2

zθ

γ



Is an undulator axion factory?

• Light source 
• Magnets 

Battesti et al Physics Reports 765-766(15)

Axion factory Axion detectorWall

https://www.researchgate.net/scientific-contributions/R-Battesti-12678010?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0


Is an undulator axion factory?

• Light source 
• Magnets 

Sheild for facility

An undulator in use  
satisfies the more than  
half of the condition of LSW. 
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Sheild for facility

If an undulator is an axion factory,

Storage ring tunnel, etc

WY, Junya Yoshida, arXiv:2408.17451

Experimental apparatus 
using X-rays

https://arxiv.org/search/hep-ph?searchtype=author&query=Yoshida,+J
https://arxiv.org/abs/2408.17451


Sheild for facility

If an undulator is an axion factory,

Storage ring tunnel, etc

we have a super low cost strategy:  
       Install an ‘axion detector’ and wait!

Axion detector

WY, Junya Yoshida, arXiv:2408.17451

Experimental apparatus 
using X-rays

https://arxiv.org/search/hep-ph?searchtype=author&query=Yoshida,+J
https://arxiv.org/abs/2408.17451


Case of NanoTerasu, 

X2 sweet 
spot
Hall

Undulator

Bending magnet

Photon 

Axion 

•Photon beam spread  

•Distance to sweet spot  

•Detector with scale   
will cover the interesting directions.

Δθ ∼ 1/104

O(10m)

≫ 10m × 1/10000 ∼ 1mm

J. Yoshida, WY, preliminary

BL14U beam line
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X2 sweet 
spot
Hall

Undulator

Bending magnet

Photon 

Axion 

•Photon beam spread  

•Distance to sweet spot  

•Detector with scale   
will cover the interesting directions.

Δθ ∼ 1/104

O(10m)

≫ 10m × 1/10000 ∼ 1mm

👁

From Yoshida-san

J. Yoshida, WY, preliminary

BL14U beam line



2. Undulator Axions 
Based on WY, J. Yoshida, 2408.17451



Let us take the QFT approach

� �

j B• (1)Draw Feynman Diagram 

• (2)Calculate the amplitude

ℒint = − gϕγγϕ ⃗E ⋅ ⃗B ext − Jbackground
μ Aμ

+O(K2)

Neglecting terms .δX(x) with x ≫ 2π/X

ext
From electron motion



(3) estimate axion production (with massive axion) 

 contributionO(K0)

 contributionO(K2)

nϕ(per single electron)
mϕ ∼ kγ
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(3) estimate axion production (with massive axion) 

 contributionO(K0)

 contributionO(K2)

� �

j B

cos θ

nϕ(per single electron)

・Given the mass, energy and polar angle are fixed

mϕ ∼ kγ



Heavy mass range with resonance can exceed  
existing limits from the laboratory.

O(days)vs O(years)

3yrs operation 
 is assumed

NanoTerasu-like 
undulator assumed for  
axion factory

10-6 10-4 0.01 1
5.×10-8
1.×10-7

5.×10-7
1.×10-6

5.×10-6
1.×10-5

mϕ [eV]

g ϕ
γγ

[G
eV

−1
]

100 T ⋅ m

CROWS 
ALPS-I 

PVLAS 

1 T ⋅ m

OSQAR

  
 e.g. bending magnet 

kdet ∼ 0Axion detector: , e.g.  
undulator magnet

kdet = k WY, J. Yoshida, 2408.17451

 4events



3. Undulator dark photons 
 
 
WY, Preliminary 



Dark Photon Model

Δℒ ⊃ −
χ
2

Fdark
μν Fμν −

1
4

Fμν
darkFdark

μν −
m2

γ′ 

2
Adark

μ Aμ
dark

• One of the simplest extensions of Standard Model. 
• Dark photon couples to electron via the mixing with ordinary 
photon: . 

• Photon-dark-photon oscillation occurs similar to neutrino. 
• =>LSW without a magnet

edark = χe

See e.g. Jaeckel, Ringwald, 1002.0329 



Sheild for facility

Storage ring tunnel, etc

χ

χ
xx

we have an extremely low cost strategy:  
       Install an ‘photon detector’ and wait!

Photon 
detector

χ

Pγ−γ′ 
= 16χ4 (sin ( ΔkL1

2 ) sin ( ΔkL2

2 ))
2

nγ,signal = Pγ−γ′ 
nγ, Δk = Eγ − E2

γ − m2
γ′ 
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nγ,signal = Pγ−γ′ 
nγ, Δk = Eγ − E2

γ − m2
γ′ 

∼ m2
γ′ 

/2Eγ
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Caveats: 
•Asymptotic mass 
eigenstates should be 
considered for 

•When   
 
the production of 
heavy mode is 
suppressed. 

ΔEγ∂Eγ

m2
γ′ 
Li

2Eγ
∼

m2
γ′ 
Li

2Eγ

ΔEγ

Eγ
≫ 1.

mγ′ 
≳ kγ → m2

γ′ 
/Eγ ≳ k
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mγ′ 
≳ kγ → m2
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 Detail analysis is very important 
to understand this simple quantum  
system!



Pb

L1 = 20m

Ideal photon 
detector

L2 = 20m

VacuumVacuum

To study in more detail let me assume 
an ideal setup. (For more realistic case, the right volume is not 
vacuum, and ``detector” may lose sensitivity for certain heavy .)mγ′ 
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∼

1
μm

Eγ

∼
1

0.1nm

2π
L1

∼
1

3m
(linear attenuation coefficient)

Calculation strategy, and some results (For 
more detail, ask me!)
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L1 = L2 = 20m, kγ = 3keV
P = 15kW, L = 200/k, k = 2π/(0.03m)

SPring-8, Inada et al, 2013

CAST HINODE

Prospect ( )γ/yr

Prospect 
( )104γ/yr

Preliminary 

Undulators are dark photon factories



Conclusions:
Undulators are axion/dark photon factories!

Storage ring tunnel, etc

A sustainable and coexisting strategy:  
Install an ‘BSM detector’ out of the experimental hatch  
and wait!

More theoretical/experimental studies are needed.  
If you are interested in, feel free to join us! 

• Less time/space restriction.  
• More (would-be) photons since we do not filter them.



Undulator photons    Undulator light axions

•  direction is 
suppressed. 

•  term, i.e. Coulomb 
contribution, dominates. 

θ → 0

K0

•  direction is 
dominant. 

•  term dominates. 

θ → 0

K2

nϕ ≃ L
e2 (gϕγγB0)

2

64π2k (2 log (2γ) − 1) .nγ ≃ L
e2kK2

6π

Each relativistic electron passing through the undulator, we 
have  

WY, J. Yoshida, 2408.17451Various textbooks



Symmetry of (helical) undulator system

Q̂ ≡ − Ĥ + βz ̂Pz + βzkL̂z

A conserving charge (with ):L → ∞

Consider the transformation leaving `vacuum’ with the background 
fields invariant.

⃗B

z

Rotate around z, Lz Shift the z origin, Pz Shift the t origin, H



Understanding from symmetry
−wi + βzpz

i + βzk(sz
i + lzi ) = 0

Any particle produced from the helical undulator has

Undulator Photon  

ℒint = − JμAμ

wγ(1 − cos θβz) = βzk(1 + lz
γ)

∴ θ = 0 allowed

Spin 
difference

Accidental 
symmetry

, the electron moves straight, 
we have additional accidental symmetry. 

At K → 0

̂̃Q ≡ − Ĥ + βz ̂Pz

which is never satisfied.  
=>  contribution is forbidden. K0

Undulator Axion 
wϕ(1 − cos θβz) = βzk(0 + lz

ϕ)

∴ θ ≠ 0

ℒint = − gϕγγϕ ⃗E ⋅ ⃗B − JμAμ

, we do not have accidental symmetry  

due to . 

At K → 0

⃗B ext ≠ 0

Nothing but the arguments  
of the “delta functions” ->Measurement of spin!

No symmetry forbids Coulomb Contribution.



How undulator emits synchrotron radiation

(1)Maxwell equations (2)Delayed vector potential

⃗B =
⃗R

R
× ⃗E

(4)Poynting vector, ⃗S = ⃗E × ⃗B
At large R the dominant contribution is

(3) Electromagnetic field

(5)Power of radiation (6)Electron motion+approximations:

∂μFμν = Jν Aμ( ⃗x, t) = ∫ d3x′ 

1
| ⃗x′ − ⃗x |

jμ ( ⃗x′ , t − | ⃗x′ − ⃗x |)
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How undulator emits synchrotron radiation

(1)Maxwell equations (2)Delayed vector potential

⃗B =
⃗R

R
× ⃗E

(4)Poynting vector, ⃗S = ⃗E × ⃗B
At large R the dominant contribution is

(3) Electromagnetic field

(5)Power of radiation (6)Electron motion+approximations:

∂μFμν = Jν Aμ( ⃗x, t) = ∫ d3x′ 

1
| ⃗x′ − ⃗x |

jμ ( ⃗x′ , t − | ⃗x′ − ⃗x |)

Coloumb term ∼ O(K0) Radiation term ∼ O(K1)

(Radiation term)^2



Numerical check with background electric magnetic field
Helical undulator, Using E, B estimated from Maxwell eqs as background. gϕγγ = 1GeV−1,

k ϕ
=

kβ z

1 − cos θβ z

θ ∼ 1/γ

K = 0.05

c.f. analytic formula for the dependence on azimuth angle,ϕ̃,

= 1 (with κ = 1,ϕ = 0)
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= 1 (with κ = 1,ϕ = 0)
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Numerical check with background electric magnetic field
Helical undulator, Using E, B estimated from Maxwell eqs as background. gϕγγ = 1GeV−1,

k ϕ
=

kβ z

1 − cos θβ z

θ ∼ 1/γ

K = 0.05K = 0.5

O(K0)

O(K2)

c.f. analytic formula for the dependence on azimuth angle,ϕ̃,

= 1 (with κ = 1,ϕ = 0)



Numerical check mϕ = kγ
kϕ = kγ2/2

Not very small with   

, for conventional LSW. 

mϕ ∼ kγ

ηLSW ∼ g2
ϕγγ(B0L)2 ∼

L
λ

ηreso =
meter

O(10)cm
ηreso

cos θ



Axion-photon conversion with magnets
ϕγ

⃗B ext = ⃗B 0 cos[zk] for 0<z<L
✖

out⟨ϕ, kϕ |γ, kγ⟩in ∝ gϕγγδ(3)(pϕ − pγ)∫
L

0
dzei(kz−kϕ,z)zi ⃗ϵ ⋅ ⃗B ext

∝ gϕγγδ(3)(pϕ − pγ)δL(kγ,z − kϕ,z ± k)B0

ℒint = − gϕγγϕ ⃗E ⋅ ⃗B

: Delta-like function  

with finite volume, .

δL(x)

δL(0) ∼ δL(π/L) ∼ L
: “Momentum” from 
Bulk magnetic field

k



Axion-photon conversion rate :η ≡ nout
ϕ /nin

γ ( = nout
γ /nin

ϕ )

k = 0 k = O(1)cm−1

η ∝ δ2
L(kγ,z − kϕ,z − k) ≃ δ2

L(
m2

ϕ

2wγ
− k)
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for favored .

η ∼ (gϕγγB0L)2

mϕ



A Resonance?

4X
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