

Yuko Urakawa (KEK)

with Takahiro Tanaka (Kyoto)

+ partly with Tadashi Kuramoto (SOKENDAI)

Massless modes in cosmology 1

The unique method to address the model of inflation is...

PLANCK

 \rightarrow The spectrums of ζ (~ density contrast) and GWs γ_i .

In principle, we need to solve the entire history from inflation to the last scattering surface (of CMB).

But, in most case, not necessary because ζ and GWs are frozen in time in large scale (IR) limit .

WHY? and WHEN?

Massless free scalar field $\Box \phi = 0$

Massless modes in cosmology 2

with Lorentz invariance

$$\phi \propto e^{ik(t\pm x)}$$

in cosmology

$$\Box \phi = \frac{1}{\sqrt{-g}} \partial_{\mu} (\sqrt{-g} g^{\mu\nu} \partial_{\nu}) \phi$$
physical spatial volume
$$\propto a^{3}(t)$$

Being massless (Shift sym.).

STime independent mode. Weinberg's adiabatic mode

Weinberg (2002)

Why ζ and GWs are massless (or have shift sym)?

C Diffeomorphism invariance

$$d \int_{3}^{3} = \tilde{Q}(t) e^{2t} dX^{2}$$

$$\chi \rightarrow e^{-\lambda} \chi \qquad \text{Classically}$$

$$\zeta \rightarrow \zeta + \lambda \qquad \text{(or without}$$

Classically Shift symmetry (or without hard modes)

∃Examples w/ shift sym. while w/ diff. invariance

- Open and closed universe (K \neq 0)
- α vacua (which requires cuffoff)

Especially, w/UV radiative corrections, the presence of the shift symmetry is not very clear.

Physical or unphysical?

(for global symmetry)

Nambu (1960), Goldstone (1961, 1962), Ezawa and Swieca (1967).

0. The theory is Lorentz invariant. + 1 $\Rightarrow \sqrt[3]{Q}$ with $\dot{Q} = 0$.

1.3Conserved current $j_{n}(x)$, which satisfies $\partial_{n}(x) = 0$.

- 2.3Spacetime translation invariance, described by (\bigcup_{α}) . 3 A unique vacuum state $|0\rangle$ with $\bigcup_{\alpha}|0\rangle = 0$.
- 3. The conserved current $j_{\mu}(x)$ transforms covariantly as $j_{\mu}(x+a) = U(a)j_{\mu}(x)U^{-1}(a).$

4. Micro causality, i.e., (j, (y)) = 0 for x-y: spacelike.

Ezawa and Swieca (1967)

Unless there is a massless particle which interacts with the vacuum state via $\int_{0} \omega$, the following should hold

$$\lim_{R\to\infty} \langle 0|[j_0(f_R,t),A]|0\rangle = 0 \quad \text{for all } As$$

i.e., If LHS is non-zero, having SSB, there should be a massless field.

(spatially) smeared current

ju (fr.t)

Using the spectral decomposition, in the limit $R \rightarrow \infty$,

$$\lim_{R \to \infty} \langle 0 | [j_0(f_R, t), A] | 0 \rangle \sim \int_{0}^{\infty} \mathcal{M}^2 \times \lambda S(\mathcal{M}^2)$$

the spectral f. is dominated by $\mathcal{M}^{=0}$ pole.

Large gauge transformation (LGT)

Definition of LGT

 $\begin{array}{ll} \text{Small GTs } (G_s \ni g) & g \to 1 & \text{in} \quad x \to \infty \\ \text{Large GTs } (G_{L} \ni g) & g \not \to 1 & \text{in} \quad x \to \infty \end{array}$

Possible LGTs are restricted by the structure in the infinity

An example of LGT in QED

Gauge parameter $\alpha(x) = \mathcal{L}^{m}\chi_{m} \xrightarrow{\times} 0$ in $\chi \rightarrow \infty$

$$S4(x) = -iR \ln X^{M} 4(x)$$
, $A_{m}(x) \rightarrow A_{m}(x) - L_{M}$
const shift

Generator and Noether charge

U(1) generator

$$Q_{gen}[\alpha] \equiv \int d^4x \, \alpha(x) \, g(x)$$

with Gauss law const. $g(x) \equiv \partial_x E^{i}(x) - e_{j}^{0}(x) \approx 0$

$$\frac{\text{Noether charge}}{\text{Qym}[\alpha]} = Q_{\text{Noether}} = \sum_{\alpha} \sum_{\alpha} \sum_{\alpha} \frac{1}{\alpha}$$

$$\frac{Q_{\text{gym}}[\alpha]}{Q_{\text{Noether}}[\alpha]} = Q_{\text{Noether}}[\alpha] + Q_{\text{bolry}}[\alpha]$$

$$\frac{Q_{\text{Noether}}[\alpha]}{Q_{\text{Noether}}[\alpha]} = -\int_{V} dx \partial_{x} (x) E^{\lambda}(x) - e \int_{V} d^{\lambda} (x (x) j^{\alpha}(x))$$

$$\frac{Q_{\text{bolry}}[\alpha]}{Q_{\text{bolry}}[\alpha]} = \int_{V} dS_{x} (x) E^{\lambda}(x)$$

For small GTs, $Q_{bdry} = 0$, while for large GTs, $Q_{bdry} \neq 0$.

$$Q_{gen}[\alpha] = Q_{Noether}[\alpha] + Q_{bdry}[\alpha]$$

For small GTs, $Q_{bdry} = 0$, while for large GTs, $Q_{bdry} \neq 0$.

What does this imply?

Physical state has to satisfy

For small GTs,

* Consistent with Elitzur's theorem

For large GTs,

... unless E falles off faster than $\propto \frac{1}{r^2}$

NG theorem for LGT in QED

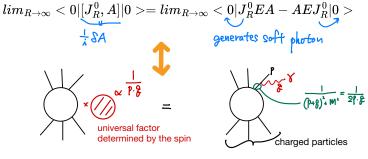
Ferrari and Picasso (1971)

Generalization of Ezawa and Swieca (1967) to LGTs

Key difference Translation and the LGT are not commutable, so

 $J_{\mu}(x)$: Conserved current for LGT

$$J_\mu(x+a)=U(a)J_\mu(x)U^{-1}(a)+\dots$$


Does not yield additional poles at $\mu^2 = 0$

Using the spectral decomposition, in the limit $R \to \infty,$

Photon as NGb and soft theorem

Ferrari and Picasso(1971)

The soft photon corresponds to NGb of the LGT and the corresponding WT identity (order parameter) gives

Soft theorem

Weinberg (1965)

What about cosmology?

Physical spatial distance

Lagrangian is invariant under

$$dl_3^2 = a^2(t)e^{2\zeta}dx^2$$
$$\vec{x} \rightarrow \xi \rightarrow \zeta + \lambda \quad \text{LGT}$$

A hypothesis

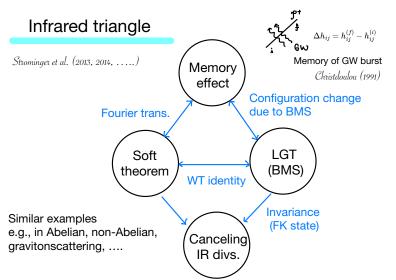
 $\boldsymbol{\zeta}$ and GWs are NG modes for spontaneously broken LGTs

 \rightarrow They are massless (having shift symmetry).

If so,....

Conditions to apply NG th. ↔ Conditions for massless ζ/GWs

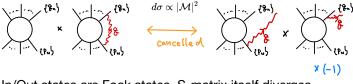
Difficulties


- · Spectral decomposition is not possible.
- In gauge-inv. prescription, the coordinates (x^{μ}) are operators.

Two aspects

- 1. Why do we expect NG in cosmology?
 - Infrared universalities
- 2. Existence of massless modes in cosmology
 - EFT (Shift sym. of effective action)

Some examples of NG argument w/o Lonrenz sym.


Watanabe and Brauner (2011), Watanabe and Murayama (2012), Hidaka (2012)

Cancelling IR divergence

$$\int \frac{d^4q}{(q^2 - i\epsilon)(p_n \cdot q - i\epsilon)(-p_m \cdot q - i\epsilon)} \propto \log \operatorname{div}.$$

We can only resolve photons with $E(q) > E_{th}$ Bloch & Mordsieck (1937) Inclusive cross section (summing $E(q) < E_{th}$) is free from IR div.

In/Out states are Fock states. S-matrix itself diverges

Cancelling IR divergence 2

Kulish & Faddeev (1970)

In/Out states dress the cloud of infinite IR photons

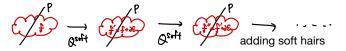
IR photon clouds

: Sum of infinite IR photons

In/Out states are not Fock states. S-matrix has no IR div.

FK state = coherent state

$$|\Psi_{P}^{FK}\rangle = \mathcal{C}^{R(P)} |P\rangle_{Hund} \otimes |0\rangle_{Keff}$$


$$R(P) \sim e \int \frac{d^{3}\mathcal{B}}{2\mathcal{U}_{P}} \left[\frac{P^{H}\mathcal{E}_{H}(\mathcal{B})}{P^{*}\mathcal{E}_{H}} \mathcal{O}^{+}_{Hf}(\mathcal{E}) - h.c. \right]$$

$$IR \text{ pole (recall soft th.)}$$

FK state and SSB of LGT

(Seff) Kapec, Perry, Raclariu, Strominger (2017) FK state = coherent state whose eigenvalue is shifted by LGT.

Q : charge of LGT which shifts soft mode $f_p \rightarrow f_p + \partial_{z} \varepsilon$

Infinite number of degenerate vacua with different soft hairs T SSB of LGT: Choosing one of the different clouds

FK state and SSB of LGT 2

Kapec, Perry, Raclariu, Strominger (2017)

The entire FK state is invariant under the LGT.

$$\begin{array}{cccc} & & & & & & & & \\ \mathbb{Q} & | \underline{\Psi}_{p; \frac{1}{2}}^{FK} \rangle = & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

The shift of the soft mode is exactly cancelled by soft dressing.

graviton scattering Ware, Saotome, Akhoury (13), Choi, Kol, Akhoury (17)

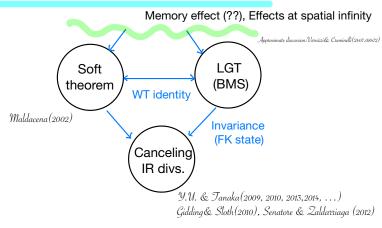
Infrared "triangle" in cosmology

Remarks for non-cosmologists

- No Lorentz invariance, IR = Long (spatial) distance ٠
- Target is not \mathcal{M} (in-out), but expectation value (in-in)

Relevant large gauge transformations

3 dim spatial line element $dl^2 = a^2(t)e^{2\zeta(t,x)}[e^{\gamma(t,x)}]_{ij}dx^i dx^j$ $\gamma_{ii} = \partial_i \gamma_{ij} = 0$ $(i, x) \simeq (i, x) - \lambda (i + x)$


 $x^i
ightarrow x^i_\lambda = e^\lambda x^i$ Dilatation

• (Shear) distortion $x^i \rightarrow [e^{\frac{1}{2}\Lambda}]^i{}_i x^j$

 $\chi_{ij}^{4}(t, \vec{x}) \simeq \chi_{ij}(t, \vec{x}) - \Lambda \cdots$

Constant shift of C/GW

Infrared "triangle" in cosmology 2

Consistency relation (Soft theorem)

 I_{vac} : Euclidean vacuum (Free theory limit is Bunch-Davies)

Consistency relation with all modes being superhorizon.

Maldacena (2002), Creminelli and Zaldarriaga (2004)


n=2. fnL = -0.9 ± 5.1 [PLANCK 18]

This relation holds even if short modes are sub horizon. ٠

Pimental, Senatore, and Zaldarriga (2012)

- for O: general integer spin fields
 This relation holds even if short modes are sub horizon. Tanaka & Urakawa(2017)

Euclidean vacuum and FK

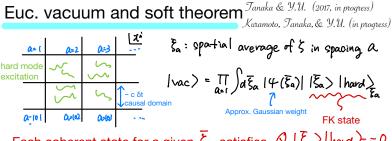
The shift of the soft mode is cancelled by soft dressing.

Euclidean vacuum in cosmology

Different spacing = Different causality connected regions

$$\frac{a \cdot (a \cdot 2)}{a \cdot 2} = \frac{[\chi^{2} \cdot 1 \cdot 2}{a} = \xi_{a} : \text{spartial average of } \xi \text{ in spacing } A$$

$$\frac{a \cdot (a \cdot 2)}{a \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (4 \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$


$$\frac{f_{a} \cdot (f_{a})}{f_{a} \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (4 \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$

$$\frac{f_{a} \cdot (f_{a})}{f_{a} \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (4 \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$

$$\frac{f_{a} \cdot (f_{a})}{f_{a} \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (4 \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$

$$\frac{f_{a} \cdot (f_{a})}{f_{a} \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (4 \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$

$$\frac{f_{a} \cdot (f_{a})}{f_{a} \cdot 2} = \prod_{a \cdot 1} \int_{d} \xi_{a} | (f_{a} \cdot \xi_{a})| | \xi_{a} \rangle | hard \rangle$$

Each coherent state for a given $\overline{\xi}_{a}$ satisfies. $\mathcal{Q} | \overline{\xi}_{a} > | havd \rangle_{\overline{\xi}_{a}} = 0$ $\mathcal{Q} (= \mathcal{Q}^{\text{soff}} + \mathcal{Q}^{\text{havd}}) : Charge of LGT$ $\mathcal{I}_{anaka} \& \mathcal{Y}.\mathcal{U}. (2017)$

The shift of ζ 's soft mode is cancelled by hard modes (of arbitrary sources of gravity) w/soft dressing.

$$\langle v_{\alpha c} | [i Q^{hord}, \prod_{a=1}^{n} O^{H}(t_{a}, w] | v_{\alpha c} \rangle = - \langle v_{\alpha c} | [i Q^{ooff}, \prod_{a=1}^{n} O^{H}(t_{a}, w] | v_{\alpha c} \rangle$$

Soft theorem (Consistency relation)

Claims

Tanaka & Y.U. (2017, in progress)

- The theory is local and spatial Diff invariance.
- The quantum stat $|\Psi\rangle$ is LGT(dilatation/shear) invariant, i.e.,

$$Q^{\text{dilatotion}} [\tilde{\Sigma}] | \text{hard} \geq_{\tilde{E}^{w}} = 0, \quad Q^{\text{shear}} [\tilde{\Sigma}^{w}] | \text{hard} \geq_{\tilde{\Sigma}^{w}} = 0$$

$$\bigwedge_{w < \tilde{E}^{(w)} | \tilde{\Sigma}^{w} >}$$

Soft theorem

$$-\frac{J}{4\pi}(k;\frac{\partial}{\partial q_{1}},*\cdot)\langle \Psi | O^{H}(t_{1},k_{1})\cdots O^{H}(t_{n},k_{n})|\Psi \rangle = \frac{\langle \Psi | S_{k}^{*} O^{H}(t_{1},k_{1})\cdots O^{H}(t_{n},k_{n})|\Psi \rangle}{p^{119}(8)}$$

$$\frac{\xi_{1}}{\xi_{1}} \frac{\xi_{1}^{*}}{\xi_{1}} + \cdots \qquad is subject to LGT.$$

$$\frac{g_{eneral}}{\xi_{1}} \frac{f}{\xi_{1}} \frac{\xi_{1}}{\xi_{2}} \frac{f}{\xi_{1}} \frac{\xi_{1}}{\xi_{2}} \frac{f}{\xi_{1}} \frac{\xi_{1}}{\xi_{2}} \frac{f}{\xi_{2}} \frac{f}$$

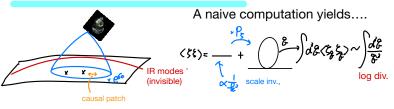
- Cancellation of IR divergence
- Shift symmetry of the effective action

Shift symmetry in EFT (~ ∃NG mode)

Feynman - Vernon's influence functional

Integrating out the hard modes

$$S_{eff}[\zeta^+,\zeta^-]=S[\zeta^+]-S[\zeta^-]+S_{IF}[\zeta^+,\zeta^-]$$


Correction due to integrating out hard modes

Janaka & Y.U. (2015, 2017, in progress) inflution + marstive is a general fields theory ur LOT

Perturbatively,....

Shift symmetry \rightarrow Existence of NG mode

Cancellation of IR divergence

Tanaka & Y.U. (2009, 2010, 2013, 2014, 2017)

These diverging IR modes = Shift of ζ due to LGT

LGT invariant quantities are free from IR div. physical distance (LGT inv) $dl_{phys} = a(t)e^{\zeta}dl$ Evaluate correlators using l_{phys} but not l. Dressing of IR modes $\overline{\zeta}$ (~ FK)

Summary and prospects

The overall IR structure of QED/perturbed gravity in asymptotically flat spacetime and the one in cosmology share the same properties.

LGT inv. _ Soft th, Cancellation of IR div

```
Shift symmetry (massless mode)

↓ for cosmology

time independent mode

( ≠ conservation of ζ)
```

, while there are also differences in a detailed view.

- · IEvoc > ~)dE (weght) [FK] ?? · explicit op. on hard modes.
- In cosmology one can consider LGT non-inv. state, but what about QED or perturbed gravity (in AF)?