The Frontier of Particle Physics: Exploring Muons, Quantum Science, and the Cosmos

Quantum computing for stochastic inflation: calculating eigenvalues of differential operators and estimating the decay rate of the perturbation distribution tail

Jun 19, 2025

Koichi Miyamoto

Center for Quantum Information and Quantum Biology (QIQB), Univ. of Osaka

Based on Phys. Rev. Research 7, 023251 (2025) (with Y. Tada (Rikkyo Univ.))

My career

2013: got PhD (cosmology @ Kawasaki-Lab., ICRR, U. Tokyo)

2013 - 2017: Mitsubishi UFJ Morgan Stanley Securities (investment bank)

Developed derivative pricing models

2018 - 2020: Mizuho-DL Financial Technology (consulting firm)

- Developed credit scoring models (e.g. decision-making on lending)
- 2019 : Research on applications of quantum computing to finance
 2021 : Current job

Current research topics

> applications of quantum algorithms to various fields in industry & science

✓ finance, cosmology, bioinformatics, ...

1. Basics of quantum computing

Quantum computing era is coming

Many news on quantum computers reported recently

- > Tech giants developing quantum computers (Google, IBM, ...)
- > Japanese institutions too (RIKEN, Fujitsu, UOsaka⁺)
- We expect disruptive innovations in various industries via speedup of heavy calculations by quantum computers
 - chemical, finance, pharmaceutical, ...

Fundamental science might benefit too

chemistry, condensed matter physics, ...

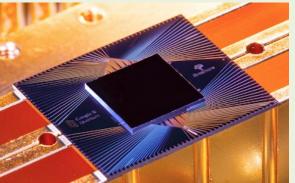
high energy physics too!

+ https://qiqb.osaka-u.ac.jp/en/20231220pr/

OIOP UOsaka's quantum computer https://xtech.nikkei.com/atcl/nxt/column/1

Google's quantum chip https://ai.googleblog.com/2019/10/ quantum-supremacy-usingprogrammable.html

8/00001/08291/



What is a quantum computer?

classical computer (we are using in today's daily life)

Calculate by manipulating bits (0 or 1)

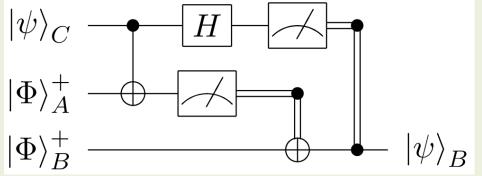
quantum computer

 \succ calculate by manipulating <u>quantum bits (qubits)</u> that takes a <u>superposition</u> of $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

> a qubit: two-level quantum system (2-dim Hilbert space) n qubits: its n-th tensor product (2ⁿ-dim Hilbert space)

Combining <u>quantum gates</u> (elementary operations on qubits), we construct a <u>quantum circuit</u> and perform desired computation

Example of quantum circuits



https://en.wikipedia.org/wiki/Quantum_circuit

O_{or} **1** Classical bit

Why are quantum computers "efficient"?

Using n qubits, we can

 \succ encode a 2^{*n*}-dim vector: $|\Psi\rangle = \sum_{i=0}^{2^{n}-1} a_{i} |i\rangle$

> do $2^n \times 2^n$ matrix operations only by ONE operation of a quantum circuit

$$\begin{pmatrix} a_0 \\ \vdots \\ a_{N-1} \end{pmatrix} \stackrel{\frown}{=} U \stackrel{\frown}{=} \begin{pmatrix} a'_0 \\ \vdots \\ a'_{N-1} \end{pmatrix} = \begin{pmatrix} u_{0,0} & \cdots & u_{0,N-1} \\ \vdots & \ddots & \vdots \\ u_{N-1,0} & \cdots & u_{N-1,N-1} \end{pmatrix} \begin{pmatrix} a_0 \\ \vdots \\ a_{N-1} \end{pmatrix}$$

However, this does not immediately speed up all the calculations

 \succ How to extract the result a'_0, \dots, a'_{N-1} from the quantum states?

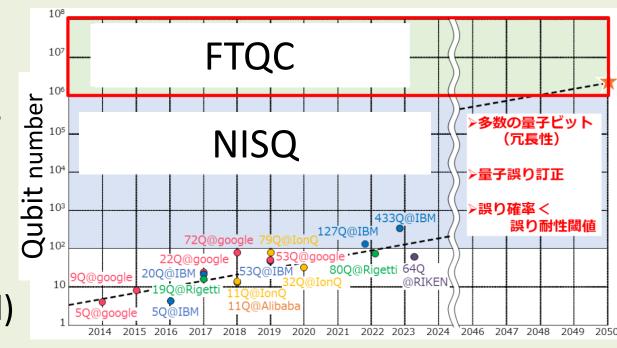
 \succ Implementing a general $2^n \times 2^n$ unitary is costly: $O(2^n)$ elementary gates

Nonetheless, for some important problems, <u>quantum algorithms</u> output quantities of interest as <u>numbers</u> with fewer steps than classical methods
 Apply q-algos to problems we want to solve on a case-by-case basis

NISQ & FTQC

Today's quantum computer: **NISQ (Noisy Intermediate-Scale Quantum)** device

- $\geq O(10 100)$ qubits prone to noise (e.g. $|0\rangle$ flips to $|1\rangle$)
- > many usages have been proposed, but quantum advantage is still unclear
- Development goal: <u>fault-tolerant quantum computer (FTQC)</u>
 - error correction
 - ✓ protect qubits by redundancy : combine O(10⁴) physical qubits to ONE logical qubit
 - can perform long calculations with theoretically guaranteed speed-up
 - $\succ O(10^6)$ phys. qubits ($O(10^2)$ logical) will be needed for practical tasks
 - > a few decades to realize



Japanese gov. prospect

https://www.jst.go.jp/moonshot/sympo/20230328/pdf/00_20230328_kita gawa.pdf

Why should we study quantum computing application NOW?

This talk focuses on FTQC algorithm

Question:

Should we NOW search applications of quantum computing, esp. FTQC, even though it will come after decades?

Yes! Because...

- ➢ Not all calculation task are sped up.
 There are only quantum algorithms for specific problems.
 → To prepare for the quantum computing era, we should consider whether we can apply quantum algorithms to problems we are interested in, and how.
- Finding use cases and estimating the impact promote quantum computer development.

Quantum algorithms useful for high-energy physics

Quantum computer can speed up large matrix operations, which leads to various practical algorithms

Quantum algorithms	Possible usage
Solve linear equation systems (matrix inversion)	
derive solve partial differential equaltions (PDEs)	Solve evolution equations (e.g. cosmological perturbation)
derive machine learning - linear regression - support vector machine - clusteringetc	Analysis of experimental data
Find matrix eigenvalues & eigenvectors	Find a ground energy & ground state

This talk focuses on <u>calculating eigenvalues of large matrices</u> that appears in <u>analyzing the primordial perturbation in stochastic inflation</u>

..etc

Building-block technique (1): Block encoding

- Implement a nonunitary matrix as an upper-left block of a unitary > nonunitary $A \Rightarrow$ not implementable as a quantum circuit
 - $\geq \frac{1}{\alpha} \begin{pmatrix} A & * \\ * & * \end{pmatrix} \text{ can be unitary} \Rightarrow \text{ implementable as a quantum circuit}$ (\alpha: factor to suppress norms of rows/cols in A/\alpha smaller than 1)
- Definition: For *s*-qubit operator *A*, if (s + a)-qubit unitary U_A satisfies $||A - \alpha(\langle 0|^{\otimes a} \otimes I)U(|0\rangle^{\otimes a} \otimes I)|| \le \epsilon$, we say U_A is a (α, a, ϵ) -block-encoding of *A* ancillary qubits $|\psi\rangle = U$ $|0\rangle^{\otimes a} \otimes \frac{A}{\alpha} |\psi\rangle + \cdots$ Not wanted (garbage state) Distinguished by whether ancilla= $|0\rangle^{\otimes a}$ or not
 - If A is sparse, we can construct its block-encoding efficiently⁺
 - ► If we have the circuit O_{ent}^A : $|i\rangle|j\rangle|0\rangle \rightarrow |i\rangle|j\rangle|A_{ij}\rangle$ to compute entries in A, U_A is constructed by O(1) uses of O_{ent}^A + Gilyen et al., STOC 2019, pp. 193-204

Building-block technique (2): Quantum singular value transformation

Singular value

Any matrix can be decomposed as $A = V \begin{pmatrix} \sigma_1 \\ \sigma_2 \\ \cdot \end{pmatrix} W^{\dagger}$ $\begin{pmatrix} \sigma_i \ge 0, \\ V, W: \text{ unitary} \end{pmatrix}$

If A is Hermite and positive-definite, singular value = eigenvalue

Quantum singular value transformation (QSVT)+

Given a block-enc. of A, construct a block-enc. of $g_S(A)$: $U_{g_S(A)} = \begin{pmatrix} g_S(A) & * \\ * & * \end{pmatrix}$

Here, $g_{\rm S}(A)$ is transformation of A's singular values by a function g:

$$A = V \begin{pmatrix} \sigma_1 & & \\ & \sigma_2 & \\ & & \ddots \end{pmatrix} W^{\dagger} \to g_{\mathrm{S}}(A) = V \begin{pmatrix} g(\sigma_1) & & \\ & g(\sigma_2) & \\ & & \ddots \end{pmatrix} W^{\dagger}$$

 \succ enables various operations related to A

✓e.g.) inversion:
$$g(x) = \frac{1}{x} \Rightarrow U_{g_{S}(A)} = \begin{pmatrix} A^{-1} & * \\ * & * \end{pmatrix}$$

+ Gilyén et al., STOC 2019 pp. 193-204

2. Improved quantum algorithm for

calculating eigenvalues of differential operators

Eigenvalues of differential operators

Partial differential equations are widely used to describe physical phenomena

► e.g.) Wave equation:
$$\frac{\partial^2}{\partial t^2} f(t, \mathbf{x}) = c^2 \Delta f(t, \mathbf{x}), \ \Delta \coloneqq \sum_i \frac{\partial^2}{\partial x_i^2}$$

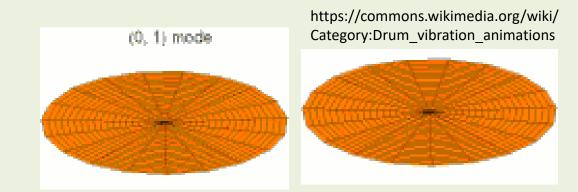
Eigenvalues of the differential operator \mathcal{L} are often of interest

$$\mathcal{L}f(\mathbf{x}) = \lambda f(\mathbf{x}), \lambda \in \mathbb{C} \Rightarrow (\lambda, f) : eigenvalue & eigenfunction$$

Important quantities that characterize the behavior of the solution

(e.g.) vibration of a membrane
$$\mathcal{L} = c^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

$$\Rightarrow \lambda: \text{ eigenfrequency, } f: \text{ eigenmode}$$



A common way: finite difference method

Set grid points in the space and approximate derivatives by the <u>finite difference method</u> (FDM)

► e.g., central diff.
$$\frac{\partial}{\partial x_i} f(\mathbf{x}) \simeq \frac{1}{2h} (f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i))$$

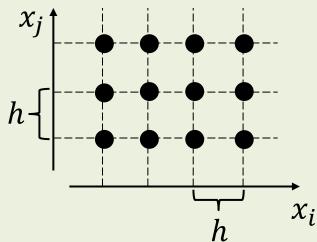
(e: the unit vector in the *i*th direction)

This converts the differential op. \mathcal{L} into a matrix L, then we apply some method for matrix eigenvalue problem to L

e.g.,
$$\mathcal{L} = \frac{\partial^2}{\partial x^2} \rightarrow L = \begin{pmatrix} -2/h^2 & 1/h^2 & & \\ 1/h^2 & -2/h^2 & 1/h^2 & \\ & \ddots & \ddots & \ddots & \\ & & 1/h^2 & -2/h^2 & 1/h^2 & \\ & & & 1/h^2 & -2/h^2/ & \end{pmatrix}$$

But FDM suffers from <u>the curse of dimensionality</u>

≻ In *d*-dim cases, if we set n_{gr} grid points in each direction, *L* is $n_{gr}^d \times n_{gr}^d$ → for large *d*, intractable in classical computing!



Previous works

Quantum algorithms can perform exponentially large matrix calculations
 e.g.) HHL for matrix inversion (pioneering algorithm in 2000s):
 O(poly log N) computational complexity for N × N matrices

In fact, some works in the 2000s⁺ proposed quantum algorithms for calculating differential operator eigenvalues, based on that for matrix eigenvalues[‡]

- But, not consider multi-dimensional cases or rigorously evaluate the dependence of computational complexity on d
- No paper since then, so recent progress in quantum algorithms has not been incorporated
- Let's improve the quantum algorithm using state-of-the-art techniques such as <u>block encoding</u> & <u>quantum singular value transformation</u>!

+ Szkopek et al., PRA 72, 062318 (2005); Papageorgiou et al., Quantum Inf. Process. 4, 87 (2005); Bessen, J. Complex. 22, 660 (2006)
+ Abrams & Lloyd, PRL 83, 5162 (1999)

Our quantum algorithm: problem setting

Consider operators of the Sturm–Liouville type

$$\mathcal{L} = -\sum_{i=1}^{d} \frac{\partial}{\partial x_i} \left(a_i(\mathbf{x}) \frac{\partial}{\partial x_i} \right) + a_0(\mathbf{x}) \quad (a_0, a_1, \dots, a_d: \overline{\mathcal{D}} \to \mathbb{R}_+)$$

on $\mathcal{D} \coloneqq (U, L) \times \cdots (U, L) \subset \mathbb{R}^d$

 \succ includes Laplacian Δ , (a part of) Fokker-Planck,

- the problem in stochastic inflation considered later, and so on
- \succ We impose the Dirichlet boundary condition (f = 0 on ∂D)

➢All the eigenvalues are positive

Our quantum algorithm: finite-difference approx.

■ Set n_{gr} points at equal intervals of h in each direction and approximate \mathcal{L} as⁺ $\mathcal{L}f(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}}) \approx \sum_{i=1}^{d} \frac{-1}{h^{2}} \Big[a_{i}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} + \frac{h}{2}\mathbf{e}_{i})f(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} + h\mathbf{e}_{i}) - \Big(a_{i}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} + \frac{h}{2}\mathbf{e}_{i}) + a_{i}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} - \frac{h}{2}\mathbf{e}_{i})\Big)f(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}}) + a_{i}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} - \frac{h}{2}\mathbf{e}_{i})f(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}} - h\mathbf{e}_{i})\Big] + a_{0}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}}) \Big] + a_{0}(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}}) \Big]$ $(\mathbf{x}_{\mathbf{j}}^{\mathrm{gr}}: \text{ grid point in } \mathcal{D} \text{ labeled by } \mathbf{j} = (j_{1}, \dots, j_{d}) \in \{1, \dots, n_{gr}\}^{\times d})$

By this, \mathcal{L} is converted into a Hermitian matrix $L \in \mathbb{R}^{N_{\text{gr}} \times N_{\text{gr}}}$ $(N_{\text{gr}} = n_{\text{gr}}^{d}$: total # of grid points)

When $n_{\rm gr} \to \infty$, L's eigenvalues λ_k^L converge to \mathcal{L} 's eigenvalues λ_k^{\dagger} $\left|\lambda_k^L - \lambda_k\right| = O\left(\frac{1}{n_{\rm gr}^2}\right)$

+ Larsson and Thomée, "Partial differential equations with numerical method" (2003) + Kuttler, SIAM J. Numer. Anal., 7, 206 (1970)

Quantum algorithm to find the first eigenvalue of a matrix

- We are often interested in the first (=smallest) eigenvalue of \mathcal{L}
- We use a QSVT-based algorithm to find the first eigenvalue of a Hermitian matrix L ¶
 - ➤ Suppose that we have
 - block-encoding U_L of L
 - quantum circuit $U_{|v\rangle}$ to prepare a state $|v\rangle$ that <u>overlaps</u> the first eigenvector $|\psi_1\rangle$ of L well: $|\langle \psi_1 | v \rangle| = O(1)$

$$|0\rangle - U_{|v\rangle} - |v\rangle$$

➤Then, we can find an estimate λ'₁ of L's first eigenvalue λ₁ with accuracy ε $(|\lambda'_1 - \lambda_1| \le ε), \text{ with } \underline{\tilde{O}(||L||/ε)} \text{ queries}^{\ddagger} \text{ to } U_H \& U_{|v\rangle}$

Not dependent on L's size

¶ Lin and Tong, Quantum 4, 372 (2020) $\ddagger \tilde{O}$: big-O with log-factors omitted

Our quantum algorithm: outline

Assumptions: we have the following quantum circuits

- a. O_{a_i} to calculate $a_i(x): O_{a_i} |\mathbf{x}\rangle |0\rangle = |\mathbf{x}\rangle |a_i(\mathbf{x})\rangle$ (Recall: $\mathcal{L} = -\sum_{i=1}^d \partial_{x_i} (a_i(\mathbf{x})\partial_{x_i}) + a_0(\mathbf{x})$)
- b. $O_{\tilde{f}_1}$ to generate $|\tilde{f}_1\rangle = \sum_j \tilde{f}_1(\mathbf{x}_j^{\mathrm{gr}}) |\mathbf{j}\rangle^{\dagger}$ that encodes a trial function \tilde{f}_1 overlapping the first eigenfunction f_1 well ($\left|\int_{\mathcal{D}} f_1(\mathbf{x})\tilde{f}_1(\mathbf{x})d\mathbf{x}\right| = O(1)$)

Procedure

- 1. Discretize the differential operator \mathcal{L} to the matrix L
- 2. Implement a block-encoding of L with O_{a_i} 's
- 3. Estimate L's first eigenvalue by the aforementioned quantum algorithm for matrix eigenvalue finding

Our quantum algorithm: computational complexity

- We find an estimate of L's first eigenvalue λ₁ with accuracy ε, with Õ(d³/ε²) queries to O_{ai}'s and O_{f̃1}.
 ➢ Polynomial w.r.t d
- Regarding the dependency on ϵ , compared to Szkopek et al. (2005) ($\tilde{O}(1/\epsilon^3)$), our algorithm makes an improvement.

Loading a function to a quantum state

How to generate $|f\rangle = \sum_{j} f(\mathbf{x}_{j}^{gr}) |j\rangle$ that encodes the function f?

For simple f which is written by elementary functions, some methods for encoding have been proposed (e.g. Grover & Rudolph, arXiv:quant-ph/0208112)

We assume that a trial function \tilde{f}_1 can be set to such a simple one (which is the case in the stochastic inflation example)

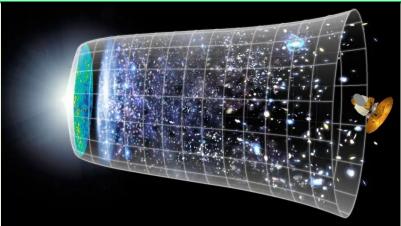
3. Application to estimating the decay rate of the perturbation distribution tail in stochastic inflation

Primordial perturbation generated by inflation

Inflation

>accelerated space expansion in the early universe

- ≻total e-fold: $N_{tot} > 50 60$
 - ✓e-fold: $N(t) = \ln a(t)/a_0$ (a: scale factor)
 (Space expanded $e^{N(t)}$ times)



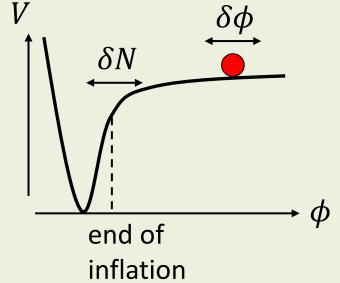
https://www.newscientist.com/definition/cosmicinflation/

caused by the potential of scalar fields (*inflatons*) slowly rolling to the potential minimum

In inflation, the primordial curvature perturbation is generated by inflaton's quantum fluctuation

• δN -formalism

 \succ curvature pert. ζ = fluctuation of the total e-fold δN^{\dagger}



Stochastic inflation

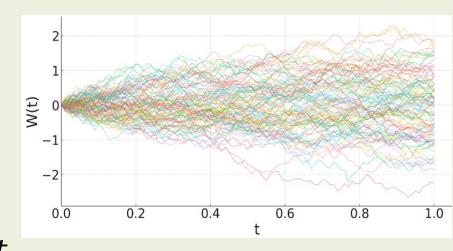
Probabilistic framework to analyze inflationary perturbations⁺

> Dynamics of inflatons $\phi = (\phi_1, \dots, \phi_d)$ (coarse-grained on a large scale) is described by the following stochastic differential eq. (Langevin eq.) ¶

$$d\phi_i = -\frac{1}{\nu(\phi)} \partial_{\phi_i} \nu(\phi) dN + \sqrt{2\nu(\phi)} dW_i$$
$$\checkmark \nu = V/24\pi^2, V: \text{ inflatons' potential}$$

 $\checkmark W_i$: Wiener process (Brownian motion)

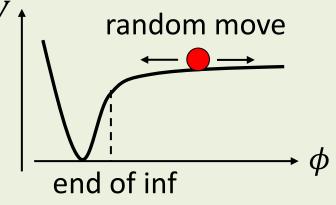
 $- dW_i(t) = W_i(t + dt) - W_i(t)$ obeys normal dist. with mean=0 & variance= dt



 \checkmark e-fold N is used as a variable that represents time

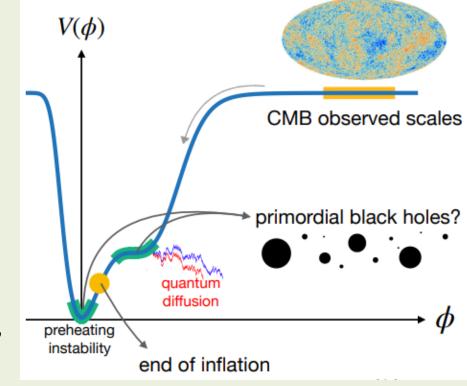
 $\gg \delta N$ = fluctuation of the time when ϕ reaches the end-of-inflation point

+ For a review, see Cruces, Universe 8, 334 (2022) ¶ We take a unit that the reduced Planck mass is 1.



Eigenvalue problem in stochastic inflation

- If inflatons go through a very flat region (e.g., inflection point), random movement dominates slow-roll
 - \rightarrow <u>Fat tail</u> in the probability distribution of density perturbations
 - \rightarrow primordial black holes
- Conditioned that inflatons are at $\boldsymbol{\phi}$ at some time, the probability density of \mathcal{N} , e-fold to the end of inflation, obeys the adjoint Fokker-Plack eq. $\partial_{\mathcal{N}} P(\mathcal{N}|\boldsymbol{\phi}) = \mathcal{L}_{FP}^{\dagger} P(\mathcal{N}|\boldsymbol{\phi}), \ \mathcal{L}_{FP}^{\dagger} = \sum_{i=1}^{d} \left(-\frac{\partial_{\phi_{i}} v}{v} \partial_{\phi_{i}} + v \partial_{\phi_{i}}^{2} \right)$



Vennin, arXiv:2009.08715

Eigenvalues of $\mathcal{L}_{FP}^{\dagger}$ = decay rate of $P(\mathcal{N}|\boldsymbol{\phi})$ w.r.t. \mathcal{N} \Rightarrow If $\mathcal{L}_{FP}^{\dagger}$ has small eigenvalues, $P(\mathcal{N}|\boldsymbol{\phi})$ may have a fat tail!

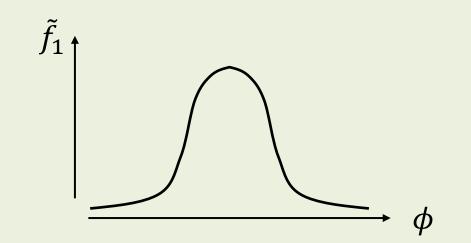
Applying our quantum algo to find the eigenvalue of $\mathcal{L}_{\mathrm{FP}}^{\dagger}$

- \blacksquare d may be large (multifield inflation) \rightarrow classically intractable
- Our quantum algorithm can be applied
 - $> \mathcal{L}_{FP}^{\dagger}$ is not of the Sturm-Liouville type, but can be transformed to $\mathcal{L}_{FP}^{\dagger}$ of that type with the same eigenvalues
- Issue: Can we choose a trial function \tilde{f}_1 overlapping the first eigenfunc f_1 well?
 - $\succ \left| \int_{\mathcal{D}} f_1(\mathbf{x}) \tilde{f}_1(\mathbf{x}) d\mathbf{x} \right|$ should be as large as possible
 - \succ But we do not know f_1 ...

Idea: f₁ is expected to have a simple shape (no node, single bump,...)

\rightarrow How about a Gaussian?

>Let's confirm through a test case!



• 2-field model with the following potential $V(\phi,\psi) = V_{\phi}(\phi) + V_0 \left[\left(1 - \left(\frac{\psi}{M}\right)^2 \right)^2 + 2 \left(\frac{\phi\psi}{\phi_c M}\right)^2 \right]$

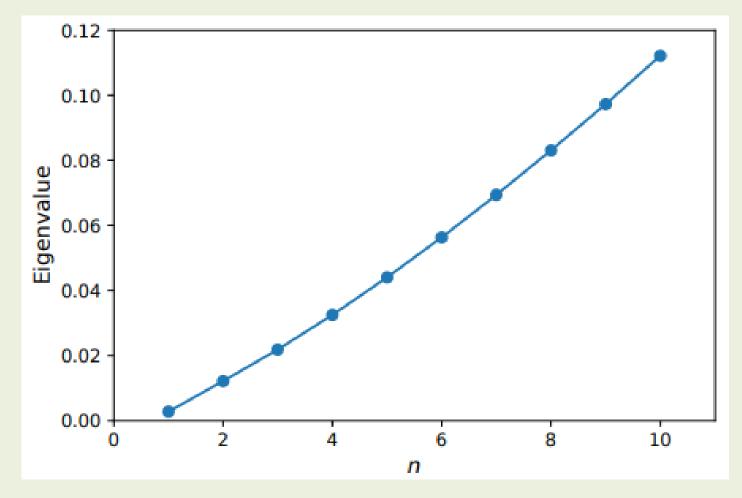
For ϕ 's potential, we take an inflection-type one $V_{\phi}(\phi) = V_0 \beta (\phi - \phi_c)^3$

In 2-dim cases, calculating eigenvalues by FDM can be tractable by classical computers, so we have performed it and seen the overlap between f_1 and the Gaussian trial function \tilde{f}_1 .

Tested parameters:

$$V_0 = 10^{-15}$$
, $M = 10^{16} {
m GeV}$, $\phi_c = \sqrt{2} M$, $eta = 10^4$

Lowest eigenvalues



➤There are small eigenvalues

- 0.004

- 0.003

- 0.002

- 0.001

- 0.000

-0.001

-0.002

-0.003

-0.004

0.004

- 0.003

0.002

0.001

- 0.000

-0.001

-0.002

-0.003

-0.004

1

2

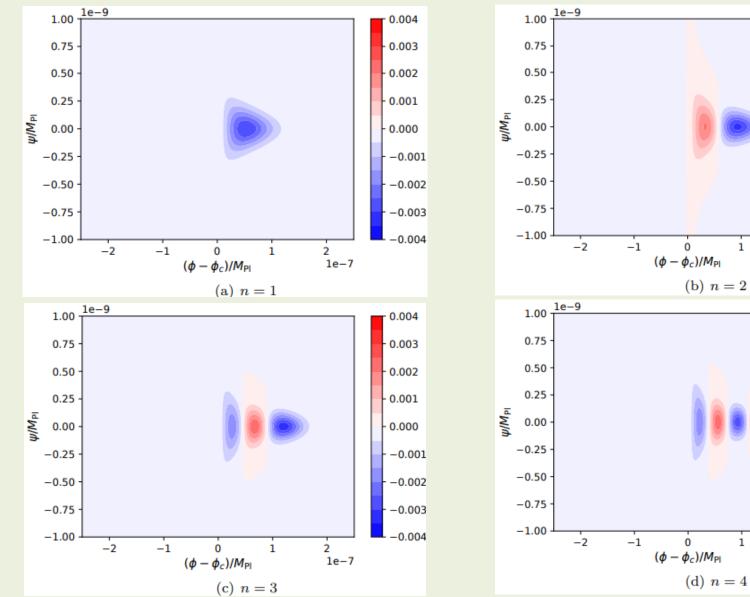
2

1e-7

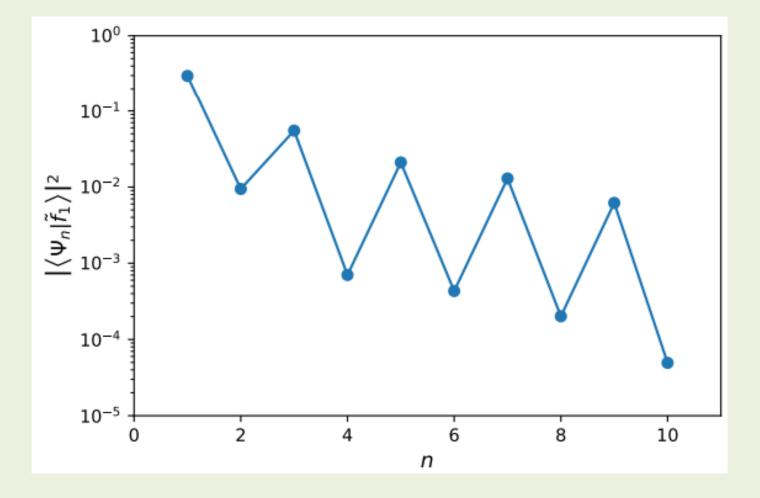
1

1e-7

Lowest eigenfunctions



Overlap between the trial function and the lowest eigenfunctions



➢ Overlap with the first eigenfuction is about 0.3
 → Our quantum algorithm is expected to work!

4. Summary

Summary

- Quantum computing may speed up various numerical problems, especially large matrix operations, including HEP-related ones.
- Calculating eigenvalues of differential operators is an important task, but the FDM approach suffers from the curse of dimensionality.
- We proposed an improved quantum algorithm for this task based on QSVT > computational complexity: $\tilde{O}(d^3/\epsilon^2)$ (d: dimension, ϵ : accuracy)
- HEP use-case: stochastic inflation
 - ➤ small eigenvalues of the adjoint Fokker-Planck op.
 - \rightarrow fat tail in the probability distribution of the density perturbation \rightarrow PBH

Demonstrated the FDM for hybrid inflation with an inflection-type potential → Gaussian trial function works

Supplement

Quantum gate & quantum circuit

quantum gate: operation on qubits (unitary operation on the state vector)

example of 1-qubit gates

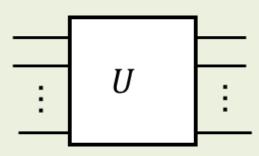
$$\checkmark \text{ NOT}: \text{flip } 0 \Leftrightarrow 1 \qquad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad |0\rangle - \boxed{X} - |1\rangle \qquad |1\rangle - \boxed{X} - |0\rangle$$

$$\checkmark \text{ Hadamard: } H = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \qquad |0\rangle - \boxed{H} - \frac{|0\rangle + |1\rangle}{\sqrt{2}} \qquad |1\rangle - \boxed{H} - \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

example of 2-qubit gates
 CNOT (controlled NOT):
 flip target qubit if control qubit is 1

Combining quantum gates, we construct a <u>quantum circuit</u> and perform desired computation

arbitrary unitary transformation by combining several types of elementary gates



 $CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$

Quantum algorithm to find the first eigenvalue of a matrix

Now, *L* is Hermitian and positive-definite, so *L*'s eigenvalue = *L*'s singular value

• We can estimate the smallest eigenvalue λ_1 as follows

► By QSVT, we can apply a step-function $\Theta_{\lambda}(x) = \begin{cases} 1; x < \lambda \\ 0; x > \lambda \end{cases}$ to eigenvalues, which transforms a quantum state as $|0\rangle|\psi\rangle = |0\rangle \otimes \sum_{i} a_{i}|v_{i}\rangle$ $\rightarrow U_{\Theta_{\lambda}}|0\rangle|\psi\rangle = |0\rangle \otimes \sum_{\lambda_{i}<\lambda} a_{i}|v_{i}\rangle + |1\rangle \otimes \sum_{\lambda_{i}>\lambda} a_{i}|v_{i}\rangle$ $(|v_{i}\rangle: i-\text{th eigenvector of } L)$

 $\succ \text{For } U_{\Theta_{\lambda}}|0\rangle|\psi\rangle, \ \lambda < \lambda_{1} \Rightarrow \Pr(\text{ancilla} = |0\rangle) = 0 \\ \lambda > \lambda_{1} \Rightarrow \Pr(\text{ancilla} = |0\rangle) > 0$

➢ By binary search on λ, we find the threshold that separates
 Pr(ancilla = |0⟩) = 0 and Pr(ancilla = |0⟩) > 0
 → It is an estimate of λ₁