The Frontier of Particle Physics: Exploring Muons, Quantum Science and the Cosmos

Exploring Physics Beyond the Standard Model via Temperature Observations of Neutron Stars

Natsumi Nagata (U. of Tokyo)

Jun 19, 2025 YITP, Kyoto

Today's topic

Search for new physics via temperature observations of neutron stars (NSs).

Explore the effects of new physics by searching for deviations from standard NS cooling.

Outline

Standard NS cooling theory

Standard NS cooling

D. Page, J. M. Lattimer, M. Prakash, A. W. Steiner, Astrophys. J. Suppl. **155**, 623 (2004); M. E. Gusakov, A. D. Kaminker, D. G. Yakovlev, O. Y. Gnedin, Astron. Astrophys. **423**, 1063 (2004).

Consider a NS composed of

- Neutrons
- Protons
- Leptons (e, μ)
- Supposed to be in the β equilibrium.
- In Fermi degenerate states.

Equation for temperature evolution

$$C(T)\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$

C(T): Stellar heat capacity

- L_{ν} : Luminosity of neutrino emission
- L_{γ} : Luminosity of photon emission

Cooling sources

Two cooling sources:

Photon emission (from surface)

$$L_{\gamma} = 4\pi R^2 \sigma_{\rm SB} T_s^4$$

Dominant for $t \gtrsim 10^5$ years

Neutrino emission (from core)

Dominant for $t \leq 10^5$ years

- Direct Urca process (DUrca)
- Modified Urca process (MUrca)
- Bremsstrahlung
- PBF process

Luminosity

- Neutrino emission is dominant for young NSs.
- Photon emission is dominant for old NSs.

Success of Standard Cooling

O. Y. Gnedin, M. Gusakov, A. Kaminker, D. G. Yakovlev, Mon. Not. Roy. Astron. Soc. **363**, 555 (2005).

Consistent with the observations for $t < 10^6$ years.

For the latest data, see http://www.ioffe.ru/astro/NSG/thermal/cooldat.html

~ 50 NSs listed.

DM heating vs NS internal heating

Dark matter heating in NSs

It has been discussed that the signature of dark matter (DM) may be detected via the NS temperature observations.

C. Kouvaris, Phys. Rev. **D77**, 023006 (2008).

Generated by ChatGPT 40

Mechanism

DM accretes on a NS.

Deposit its energy inside the NS.

Dark matter heating in NSs

Dark matter heating effect may be observed in old NSs.

- In the standard cooling scenario, temperature becomes very low for t > 10⁷ years.
- With DM heating effect, $T_s^{\infty} \rightarrow \sim 2 \times 10^3$ K at later times.

Old warm neutron stars?

Recently, "old but warm neutron stars" have been observed.

Milli-second pulsars

▶ J0437-4715: $t_{sd} = (6.7 \pm 0.2) \times 10^9$ years, $T_s^{\infty} = (1.25 - 3.5) \times 10^5$ K

O. Kargaltsev, G. G. Pavlov, and R. W. Romani, Astrophys. J. **602**, 327 (2004); M. Durant, *et al.*, Astrophys. J. **746**, 6 (2012).

▶ J2124-3358:
$$t_{sd} = 11^{+6}_{-3} \times 10^9$$
 years, $T_s^{\infty} = (0.5 - 2.1) \times 10^5$ K

B. Rangelov, et al., Astrophys. J. 835, 264 (2017).

Ordinary pulsars

▶ J0108-1431:
$$t_{sd} = 2.0 \times 10^8$$
 years, $T_s^{\infty} = (2.7 - 5.5) \times 10^4$ K

V. Abramkin, Y. Shibanov, R. P. Mignani, and G. G. Pavlov, Astrophys. J. 911, 1 (2021).

B0950+08:
$$t_{sd} = 1.75 \times 10^7$$
 years, $T_s^{\infty} = (6 - 12) \times 10^4$ K

V. Abramkin, G. G. Pavlov, Y. Shibanov, and O. Kargaltsev, Astrophys. J. 924, 128 (2022).

These observations cannot be explained in the standard cooling.

Internal heating

In actual NSs, the following internal heating mechanisms due to the slowdown of NS rotation may operate:

Non-equilibrium beta processes

See K. Hamaguchi, N. Nagata, K. Yanagi, Phys. Lett. **B795**, 484 (2019); K. Hamaguchi, N. Nagata, K. Yanagi, MNRS **492**, 5508 (2020).

DM heating effect can be observed in ordinary pulsars.

Friction caused by vortex creep

We discuss this today.

Neutron superfluid vortex line

Neutrons form Cooper pairs in NSs.

Neutron superfluidity

In a rotating NS, superfluid vortex lines are formed.

The vortex lines are fixed to the crust by nuclear interactions.

P. W. Anderson and N. Itoh, Nature 256, 25 (1975).

Pulsar slowdown

Rotation of the rigid component of NS slows down.

But the superfluid component does not.

The rotational speed difference δv develops.

Magnus force

Vortex lines are pinned to the crust, feeling a superfluid flow.

Magnus force acts on vortex lines.

As δv increases, Magnus force increases.

When it gets large enough, vortex lines start to move outwards.

Vortex creep δv de

 δv decreases

Vortex lines pinned

Start over

Vortex creep

Vortex creep results in

 $\Omega_{\rm SF} - \Omega_{\rm crust} = {\rm const.}$

This difference is determined by the pinning force.

During this process, the rotational energy stored in the superfluid component is dissipated as frictional heat:

M. A. Alpar, et.al., Astrophys. J. **276**, 325 (1984); M. Shibazaki and F. K. Lamb, Astrophys. J. **346**, 808 (1989).

Vortex creep heating

M. A. Alpar, et.al., Astrophys. J. **276**, 325 (1984); M. Shibazaki and F. K. Lamb, Astrophys. J. **346**, 808 (1989).

Heating luminosity is given by

In old NSs, this heating balances with the photon cooling:

$$L_{\rm H} = L_{\gamma} = 4\pi R^2 \sigma_{\rm SB} T_s^4$$

$$J_{\rm obs} = 4\pi R^2 \sigma_{\rm SB} T_s^4 / |\dot{\Omega}|$$

Can be determined by observation.

The vortex heating mechanism predicts Jobs to be almost universal.

Vortex creep heating vs observations

- Observations find similar values of J.
- Theoretical calculations are in the same ballpark.

M. Fujiwara, K. Hamaguchi, N. Nagata, M. E. Ramirez-Quezada, JCAP 03, 051 (2024).

Vortex creep heating vs observations

Ordinary pulsars

Millisecond pulsars

• Temperature evolution deviates at $t \gtrsim 10^5$ years.

• Even for very old NSs, $T_s \gtrsim 10^4$ K.

M. Fujiwara, K. Hamaguchi, N. Nagata, M. E. Ramirez-Quezada, JCAP 03, 051 (2024).

Vortex creep heating vs DM heating

The DM heating is buried under the vortex creep heating unless

$$J \lesssim 10^{38} \text{ erg} \cdot \text{s}$$

Much smaller than the values favored by obs. and theor.

M. Fujiwara, K. Hamaguchi, N. Nagata, M. E. Ramirez-Quezada, Phys. Lett. B848, 138341 (2024).

Cas A NS axion limit

3 Cassiopeiae

Atlas Coelestis (1729)

John Flamsteed **First Astronomer Royal** He recorded 3 Cassiopeiae on August 16, 1680.

Never been observed since then.

Cassiopeia A (Cas A)

Neutron star (NS) was found in the center.

Explosion date estimated from the remnant expansion: 1681 ± 19 .

Cas A NS cooling

THE ASTROPHYSICAL JOURNAL LETTERS, 719:L167–L171, 2010 August 20 © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DIRECT OBSERVATION OF THE COOLING OF THE CASSIOPEIA A NEUTRON STAR

CRAIG O. HEINKE¹ AND WYNN C. G. HO² ¹ Department of Physics, University of Alberta, Room 238 CEB, Edmonton, AB T6G 2G7, Canada; heinke@ualberta.ca ² School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK; wynnho@slac.stanford.edu *Received 2010 April 14; accepted 2010 July 8; published 2010 August 2*

Cooling of Cas A NS is observed directly.

3-4% decrease in ten years.

Chandra

doi:10.1088/2041-8205/719/2/L167

Cooling sources

Two cooling sources:

Photon emission (from surface)

$$L_{\gamma} = 4\pi R^2 \sigma_{\rm SB} T_s^4$$

Dominant for $t \gtrsim 10^5$ years

Neutrino emission (from core)

Dominant for $t \leq 10^5$ years

- Direct Urca process (DUrca)
- Modified Urca process (MUrca)
- Bremsstrahlung
- PBF process

Pair-breaking and formation (PBF)

- Neutrinos are emitted when Cooper pairs are formed.
- This process enhances the neutrino emission when $T\simeq T_C$.

Luminosity

- PBF emission suddenly increases when neutrons in the core form triplet Cooper pairs.
- Neutrino emissions are suppressed at low temperatures. $\propto e^{-1}$

 $\frac{\Delta_N}{T}$

Explanation of Cas A NS cooling

D. Page, M. Prakash, J. M. Lattimer, and A. W. Steiner, Phys .Rev. Lett. 106, 081101 (2011).

If the critical temperature of neutrino triplet pairing is

$$T_C^{(n)} \sim 5 \times 10^8 \text{ K}$$

Cas A NS cooling can be explained.

Direct evidence of superfluidity in NS

PRL 106, 081101 (2011)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 25 FEBRUARY 2011

9

Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

Dany Page,¹ Madappa Prakash,² James M. Lattimer,³ and Andrew W. Steiner⁴

We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the ${}^{3}P_{2}$ channel. We find that the critical temperature for this superfluid transition is $\approx 0.5 \times 10^{9}$ K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.

Mon. Not. R. Astron. Soc. 412, L108–L112 (2011)

doi:10.1111/j.1745-3933.2011.01015.x

Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core

Peter S. Shternin,^{1,2*} Dmitry G. Yakovlev,¹ Craig O. Heinke,³ Wynn C. G. Ho^{4*} and Daniel J. Patnaude⁵

than the standard modified Urca process). This is serious evidence for nucleon superfluidity in NS cores that comes from observations of cooling NSs.

Extra cooling source

Cas A NS cooling data cannot be explained.

Limit on the cooling source.

We consider axion as a cooling source.

Axion-nucleon couplings

$$\mathcal{L}_{\text{int}} = -\sum_{N=p,n} \frac{C_N}{2f_a} \bar{N} \gamma^{\mu} \gamma_5 N \,\partial_{\mu} a$$

KSVZ model: no direct coupling to quarks

$$C_p = -0.47(3), \quad C_n = -0.02(3)$$

C_n is very small

DFSZ model: axion couples to quarks directly

$$C_p = -0.182(25) - 0.435 \sin^2 \beta$$
$$C_n = -0.160(25) + 0.414 \sin^2 \beta$$

Both can be sizable.

Luminosity of axion emission (KSVZ)

- Axion emission can be as strong as neutrino emission.
- Axion emission is sizable even if $C_n \simeq 0$.

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D98, 103015 (2018).

Cooling curves vs data

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D98, 103015 (2018).

Later work

• $f_a > 3 \times 10^7 \text{ GeV}$: KSVZ • $f_a > 4.5 \times 10^8 \text{ GeV}$: DFSZ

Much weaker limit for KSVZ.

Later work

It seems that the deviation originates from proton PBF.

Ours: J. Keller, A. Sedrakian, Nucl. Phys. **A897**, 62 (2013); A. Sedrakian, Phys. Rev. **D93**, 065044 (2016).

Leinson: his own calculation

Axion PBF emission

We revisit the calculation of the axion emissivity from singlet proton Cooper pairs by using the method of Bogolyubov transformations.

Previous calculation

J. Keller, A. Sedrakian, Nucl. Phys. A897, 62 (2013); A. Sedrakian, Phys. Rev. D93, 065044 (2016).

Transport equation

Correlation functions of nucleon axial currents

Our result agrees with the previous calculation.

Source of discrepancy

Derivation of the axion emissivity was not given in Leinson's paper.

Instead, semi-analytic formula was given.

$$Q_{pa}^{\text{PBF}} = 1.55 \times 10^{40} g_{app}^2 \left(\frac{m_p^*}{m_p}\right)^2 \left(\frac{T}{10^9 \text{ K}}\right)^5 \left(\frac{p_{F,p}}{m_p c}\right)^3 \frac{6}{7} F_2 \left(\frac{T}{T_{cp}}\right) \frac{\text{erg}}{\text{cm}^3 \cdot \text{s}} \qquad \text{JCAP}$$

$$Q_{pa}^{\text{PBF}} = 1.55 \times 10^{40} g_{app}^2 \frac{p_{F,p}}{m_p^*} \left(\frac{m_p^*}{m_p}\right)^2 \left(\frac{T}{10^9 \text{ K}}\right)^5 \left(\frac{p_{F,p}}{m_pc}\right)^2 \left[\left(\frac{m_p^*}{m_p}\right)^2 + \frac{11}{42}\right] F_2\left(\frac{T}{T_{cp}}\right) \frac{\text{erg}}{\text{cm}^3 \cdot \text{s}} \qquad \text{arXiv, v1}$$

$$Q_{pa}^{\text{PBF}} = 1.55 \times 10^{40} g_{app}^2 \frac{p_{F,p}}{m_p^*} \left(\frac{m_p^*}{m_p}\right)^2 \left(\frac{T}{10^9 \text{ K}}\right)^5 \left(\frac{p_{F,p}}{m_p c}\right)^2 \frac{6}{7} F_2\left(\frac{T}{T_{cp}}\right) \frac{\text{erg}}{\text{cm}^3 \cdot \text{s}}$$
arXiv, v2

We find that these expressions show a different dependence on the effective mass compared to ours.

Leinson:
$$\propto (m_p^*)^2 p_{F,p}^3$$
Ours: $\propto p_{F,p}^3/m_p^*$

Axion emissivity

- Our result agrees well with M. Buschmann, et. al.
- Leinson's result is significantly lower than the others.

Observation update

Updated Cas A NS limit on axion is coming (hopefully) soon.

Today's topic

Search for new physics via temperature observations of neutron stars (NSs).

WIMPs, ...

Cooling

Axion, ...

Vortex creep heating may conceal the DM heating.

Limit from Cassiopeia A NS

Our limit

 $f_a \gtrsim 5 (7) \times 10^8 \text{ GeV}$

KSVZ (DFSZ, $tan\beta = 10$)

Update results coming soon.

Vortex creep heating vs DM heating

To see the DM heating effect, we want $L_{\text{vortex}} < L_{\text{DM}}$.

J must be much smaller than the values favored by obs. and theor.

M. Fujiwara, K. Hamaguchi, N. Nagata, M. E. Ramirez-Quezada, Phys. Lett. B848, 138341 (2024).

Nucleon Cooper pairs

Nucleons in a NS form pairings below their critical temperatures:

- Neutron singlet 1S_0 \longrightarrow Only in the crust. Less important.
- Proton singlet ¹S₀
- Neutron triplet ³P₂

Form in the core. Important.

Proton singlet pairing gap

Neutron triplet pairing gap

Previous work

- It was argued that the Cas A NS cooling data favors the presence of an extra cooling source.
- Axion-proton coupling was neglected.

Effective mass

The factor of $(m_p^*)^3$ leads to almost an order-of-magnitude difference in emissivity.

Observation update

For a long time, the cooling trend was primarily observed in data taken in the GRADED mode of the ACIS detectors.

Instrumental effect?

B. Posselt, et.al., Astrophys. J. 779, 186 (2013).

More recently, observations in the FAINT mode have accumulated sufficient temporal coverage to confirm the rapid cooling.

B. Posselt and G. G. Pavlov, Astrophys. J. 932, 83 (2022).

P. S. Shternin, MNRAS **518**, 2775 (2022).

Neutrino emission processes

- These processes can occur without superfluidity.
- Direct Urca can occur only in heavy stars.

Fermio momenta

$$p_F \gg T, m_n - m_p$$

Direct Urca condition

- Direct Urca can occur only in the high density region in a heavy star. For the APR equation of state, $M \gtrsim 2M_{\odot}$
- Other processes become important if Direct Urca is forbidden.

Temperature distribution

Relaxation in the Core completes in ~ 100 years.

D. Page, J. M. Lattimer, M. Prakash, A. W. Steiner [arXiv: 1302.6626].

Surface temperature

It is the surface temperature that we observe, so we need to relate it to the internal temperature.

This relation depends on the amount of light elements in the envelope.

$$\eta \equiv g_{14}^2 \Delta M/M$$

g₁₄: surface gravity in units of 10^{14} cm s⁻². Δ M: mass of light elements.

A. Y. Potekhin, G. Chabrier, and D. G. Yakovlev, A&A 323, 415 (1997).

As the amount of light elements gets increased, the surface temperature becomes larger.

Luminosity of axion emission (DFSZ)

Axion emission is stronger than the KSVZ case.

K. Hamaguchi, N. Nagata, K. Yanagi, and J. Zheng, Phys. Rev. D98, 103015 (2018).

Technical details

- APR equation of state
- NS mass: $M = 1.4M_{\odot}$
- Neutron ¹S₀ gap: SFB model Not so relevant.
- Proton ¹S₀ gap: CCDK model

Any gap models are fine as long as it is large enough.

Neutron ³P₂ gap (Highly uncertain)

Regard gap height (\propto T_C) and width as free parameters.

EOS dependence: Fermi momentum

EOS dependence: pairing gaps

EOS dependence: axion emissivity

EOS dependence: differences

M. Buschmann, et.al., Phys. Rev. Lett. **128**, 091102 (2022).

L. B. Leinson, JCAP **09**, 001 (2021).

Spectral parameters

P. S. Shternin, MNRAS **518**, 2775 (2022).

Spin-down age

For magnetic dipole radiation,

$$\dot{\Omega} = -k\Omega^3 \qquad \qquad k = \frac{2B_s^2 \sin^2 \alpha R^6}{3c^3 I} = -\frac{\dot{\Omega}_{\text{now}}}{\Omega_{\text{now}}^3} = \frac{P_{\text{now}}\dot{P}_{\text{now}}}{4\pi^2}$$

By solving this, we have

$$P(t) = \sqrt{P_0^2 + 2P_{\rm now}\dot{P}_{\rm now}t}$$

(P₀: initial period)

In particular, for $P_0 \ll P_{now}$, we can estimate the neutron star age

$$t_{\rm sd} = \frac{P_{\rm now}}{2\dot{P}_{\rm now}}$$

t_{sd} is called spin-down age or characteristic age.

Pulsar age

Let us compare the spin-down age with the actual age in the case of the Crab pulsar.

Actual age

It was born in 1054, so its age is 967 years old.

Spin-down age

$$P = 0.033392$$
 s, $\dot{P} = 4.21 \times 10^{-13}$

$$t_{\rm sd} = \frac{P}{2\dot{P}} = 1.26 \times 10^3 \text{ yrs}$$

Agrees within $\sim 30\%$.

