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Hello. My name is Koji Hashimoto, Professor of Graduate School of Science, Kyoto University. Let me explain about

the "Learning Physics Domain" that we are just now trying to create. This new transformative research area aims to

revolutionize fundamental physics by combining machine learning and physics.

Throughout its long history, physics has provided the most precise testing ground in the natural sciences, solving

problems in various natural hierarchies in collaboration with the mathematical sciences.

On the other hand, the field of machine learning is a major research field, a mathematical system that forms the

foundation of artificial intelligence and has seen explosive progress in recent years due to advances in computational

science. We are launching the transformative research area "Machine Learning Physics" to integrate these two major

fields.

In this area, we will tackle the most important challenges in fundamental physics, such as the discovery of new laws
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Deep Learning is changing particle physics  

b/c-tagging performance
- Promising performance compared to previous taggers

- ×3 better light jet rejection (at b-jet eff 70%) than DeepJet
- ×2 better light rejection + ×2 better b-jet rejection (at c-jet eff 35 %) than DeepJet

15

Flavor Tagging Performance CMS-DP-2024-066

b-tagging
c-tagging



JET TAGGING:  WINDOW TO THE NEW PHYISICS  

Parton  →hadron 
quark 

anti-quark 
High  pT H, Z, top  
is important for BSM study  
and they maybe highly boosted 

Mostly talking about top QCD classification in this talk  
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Neural Network Crash Course: What is an Artificial Neural Network?

The artificial neural network is a biology inspired framework of modelling a
function.

Basic architectural unit: neuron
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Build a network architecture
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ŷ

This kind of feed-forward network’s output ŷ(x1, · · · , xn) could
approximate an output of a function y(x1, · · · , xn) if proper weights and
biases are assigned.
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Training for classification
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training:     wij,bi
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minimization of loss function  

L(y, ŷ)
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✅表現力　expressive power 

✅データを学習　learn from data    

✅微分可能Simple linear algebra + activation　 ’s represent likeliness to be y ̂y

data pool of images 

y: truth　　 
1→(1, 0, 0, ..) 
2→(0, 1, 0,…) 
3→(0, 0, 1, …)

(28x28) の画像データをn 個
output  

 ̂y = ( ̂y1, ̂y2 . . . . . ̂y10), ∑
i

̂yi = 1

̂yi =
exp(xi)

∑j exp(xj)



Network design is important 
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Practical Example with CNN: Image Recognition Techniques with Jet Image
L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman, (1511.05190)32- -

Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Basic building unit: 2D convolutional layer

h(n)
k,xy = '(

X

�x ,�y

w (n)
k`,�x�y

h(n�1)
`,(x+�x )(y+�y ) + b(n)
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Convolution

f ⇤ g(x) =

Z
dx 0f (x 0)g(x � x 0)

Reduce number of free parameters by weight and bias sharing.
Specialized in understanding local spatial correlations
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Therefore a decision needs to be made about how to construct a graph from the set of

inputs. Di↵erent graph construction methods are illustrated in figure 6. Depending on

the task, one might even want to avoid creating any pairwise relationships between

nodes. If the objects have no pairwise conditional dependence — a DeepSet [53]

architecture with only node and global properties might be more suitable. Edges in

the graph serve 3 roles:

(i) The edges are communication channels among the nodes.

(ii) Input edge features can indicate a relationship between objects, and can encode

physics motivated variables about that relationship (such as �R between objects).

(iii) Latent edges store relational information computed during message-passing,

allowing the network to encode such variables it sees relevant for the task.

In cases where the input sets are small (Nv ⇠ O(10) ) the typical and easiest

choice is to form a fully connected graph, allowing the network to learn which object

relationships are important. In larger sets, as the number of edges between all nodes

increases as Ne / (Nv)2, the computational load of using a neural network to create

an edge representation or compute attention weights becomes prohibitive. One possible

(a) (b)

(c)

Figure 6. Di↵erent methods for constructing the graph. (a) Connecting every node
to every other node (b) Connecting neighboring nodes in some predefined feature space
(c) Connecting neighboring nodes in a learned feature space.
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TRANSFORMER 
• Successful language model— good at long correlation(context)   

• good at long term memory (keeping informaion) 

Scaling low of LLM 
(Large model and large data →improve forever

Recent Apple paper 
(They just know patterns very well) 

大規模言語モデルの限界について最近の
Apple の論文が話題だと聞いたのですが、
どの論文のことでしょうか。

!!論文の概要
• 

• 

• 

Appleの研究者による注目の論文は、大規模言語モデル（LLMs）の
「推論能力」における根源的な限界を示唆するものです。特に、
「Large Reasoning Models（LRMs）」が高度に複雑な問題に対し
て“完全な精度崩壊（complete accuracy collapse）”を起こすことを
報告しています。具体的には以下の内容が取り上げられています。

Appleの研究チームが、Tower of Hanoi（ハノイの塔）やRiver

Crossing（川渡り）のようなパズル問題を用いて、さまざまな
LLM（OpenAI、Google、Anthropic、DeepSeekなど）を検証。

問題の複雑性が一定以上になると、モデルは正解率がゼロに落
ち、問題の難易度が高くなると推論工程（Chain-of-Thought）そ
のものを「減少」させ、粘り強く解こうともしない現象が見られ
た。

これは単なる計算ミスではなく、「推論努力を放棄する」ような
現象であり、現行アプローチにはスケーリング限界があることを
示唆している。 theguardian.com +4

この発見は、「LLMの高い推論能力がAGI（汎用人工知能）への期待を
支える根拠としては弱いかもしれない」という論争に火をつけ、Gary

Marcus氏などからも「衝撃的」「業界のアプローチには再考が必要」

ChatGPT の回答は必ずしも正しいとは限りません。重要な情報は確認するようにしてください。

質問してみましょう

ツール

ChatGPT 4o

Apple LLM 推論限界 https://chatgpt.com/c/684ba03e-c560-800c-bca5-44e5ff1ba1fa

1 / 1 2025/06/20, 9:11

https://chatgpt.com/share/6854a7be-2768-800c-a9a4-34dfd0431c4a



d (features ) 
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(#jet constituents )

 “PARTICLE TRANSFORMER” :SELF ATTENTION LAYERS 

• input X: n( particles in the jet) x d(features)  

•  n x n Attention matrix     
 (W trainable parameters)  

• Multiply  to get n x d output   

• stack attention layers  for   X → X’= →X’’  
skip connection help to keep original information  

• completely built from Low level feature 

• using all correlation inclusing long range to short 
range.  

A = QKT

K = WKX, Q = WQX

V = WV X δX

X + δX
n n

d 

n

MATMUL

MATMUL

d 

n

input data(Squirtle) 
constituent momentums  

K Q
V

n

n

Attention 
matrix 

output size = input size  

  Q ⋅ KT + ℐ

WK

WQ WV

Self Attention

Self Attention:
self-attention allows each element in the sequence to 
attend to all other elements, capturing both local and 
global dependencies. This is achieved through the 
calculation of attention scores, which are used to linearly 
combine the values associated with di%erent positions.

Self attention output has the same  
dimension as the input
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For self attention  
Query, Key and Value are the same

It assigning di%erent weights 
 to di%erent elements in the input sequence,  
emphasizing the more relevant parts while 

 downplaying  the less relevant ones

Arxiv:2010.11929 

warturtle

SETUP



Particle Transformer for Jet Tagging

Table 1. Jet tagging performance on the JETCLASS dataset. ParT is compared to PFN (Komiske et al., 2019b), P-CNN (CMS Collaboration,
2020b) and the state-of-the-art ParticleNet (Qu & Gouskos, 2020). For all the metrics, a higher value indicates better performance. The
ParT architecture using plain MHAs instead of P-MHAs, labelled as ParT (plain), is also shown for comparison.

All classes H ! bb̄ H ! cc̄ H ! gg H ! 4q H ! `⌫qq0 t ! bqq0 t ! b`⌫ W ! qq0 Z ! qq̄
Accuracy AUC Rej50% Rej50% Rej50% Rej50% Rej99% Rej50% Rej99.5% Rej50% Rej50%

PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2911 112 1185 3868 17699 12987 384 311

Table 2. Particle input features used for jet tagging on the JETCLASS, the top quark tagging (TOP) and the quark gluon tagging (QG)
datasets. For QG, we consider two scenarios: QGexp is restricted to use only the 5-class experimentally realistic particle identification
information, while QGfull uses the full set of particle identification information in the dataset and further distinguish between different
types of charged hadrons and neutral hadrons.

Category Variable Definition JETCLASS TOP QGexp QGfull

Kinematics

�⌘ difference in pseudorapidity ⌘ between the particle and the jet axis X X X X
�� difference in azimuthal angle � between the particle and the jet axis X X X X
log pT logarithm of the particle’s transverse momentum pT X X X X
log E logarithm of the particle’s energy X X X X
log pT

pT(jet) logarithm of the particle’s pT relative to the jet pT X X X X
log E

E(jet) logarithm of the particle’s energy relative to the jet energy X X X X
�R angular separation between the particle and the jet axis (

p
(�⌘)2 + (��)2) X X X X

Particle
identification

charge electric charge of the particle X — X X
Electron if the particle is an electron (|pid|==11) X — X X
Muon if the particle is an muon (|pid|==13) X — X X
Photon if the particle is an photon (pid==22) X — X X
CH if the particle is an charged hadron (|pid|==211 or 321 or 2212) X — X Xa

NH if the particle is an neutral hadron (|pid|==130 or 2112 or 0) X — X Xb

Trajectory
displacement

tanh d0 hyperbolic tangent of the transverse impact parameter value X — — —
tanh dz hyperbolic tangent of the longitudinal impact parameter value X — — —
�d0 error of the measured transverse impact parameter X — — —
�dz error of the measured longitudinal impact parameter X — — —

a
(|pid|==211) + (|pid|==321)*0.5 + (|pid|==2212)*0.2

b
(|pid|==130) + (|pid|==2112)*0.2.

compared to ParticleNet. Moreover, for the physics-oriented
metric, the background rejection, ParT improves over Par-
ticleNet by a factor of 3 for t ! bqq0, a factor of 2 for
H ! 4q, and about 70% for H ! cc̄. It is also clear that,
the earlier PFN and P-CNN models lag substantially behind
ParticleNet and ParT on this large dataset, amounting to up
to an order of magnitude difference in background rejection.
The large improvement of ParT is likely to lead to a sig-
nificant jump in the discovery potential for related physics
searches at the LHC.

Another observation is that there is a large variation in tag-
ging performance between signals of different types. The
best separation against the background q/g jets is achieved
for t ! b`⌫ and H ! `⌫qq0 signals – with the powerful
ParT model, these two can be selected almost perfectly, i.e.,
at an efficiency of more than 99% with nearly no contami-
nation from background jets. This opens up new territory
for jet tagging at the LHC, as these types of jets have not
been exploited for tagging so far.

Effectiveness of P-MHA. To quantify the effectiveness of
the P-MHA introduced in ParT, we carry out an ablation
study by replacing the P-MHA with a standard MHA, the re-
sulting architecture is then a plain Transformer and therefore
denoted as ParT (plain). We train ParT (plain) with the same
procedure as the full ParT and the performance is shown in
Table 1. A drop of 1.2% in accuracy is observed compared
to the full ParT, and the background rejection is reduced
by 20–30% for most signals. Note that, replacing P-MHA
with plain MHA implies that the particle interaction input is
discarded completely, but this does not lead to any reduction
of information content, as the interaction features defined in
Equation (3) are derived purely from the energy-momentum
4-vectors, which are already used as particle features via
the 7 kinematic variables presented in Table 2. Therefore,
the improvement of ParT over a plain Transformer indeed
arise from an efficient exploitation of the particle kinematic
information using the P-MHA.

Features in the context of jet classification  

Particle momentum 

charge,particle ID

displaced vertex 



PHYSICS APPLICATION  OF MACHINE LEARNING:  CONCERNS 
1.bias and valiance trade off on the training results   

ML can approximate “any function” in infinite paramter limit, therefore unstable against the 
fluctuation of the training sample.   

2.Interpretability  

It gives you the results, but the reasoning is deep inside the network and hard to extract.  This 
is  problematic when  you do not understand “true” distirbution.  This  is often the case for 
collider physics, where MC do not reproduce experimental data in detail.  

3. scaling vs symmetry  

Large data and Large network wins(it says) , but actually nature has symmetry, Permutation 
Invariance, boost invariance, Lorentz symmetry.. which is not easy to reconstruct from scratch.  



THE PERFORMANCE FOR TOP VS QCD CLASSIFICATION

generated at a center-of-mass energy of
→

s = 14 TeV using Pythia8 [67], with fast detector
simulation by Delphes [68]. The simulation does not incorporate e!ects from multiple parton
interactions or pileup. Jet clustering is carried out using the Anti-kT algorithm with a radius
parameter of R = 0.8, based on Delphes E-Flow objects. The dataset includes jets with
transverse momentum in the range pT ↑ [550, 650] GeV and pseudo-rapidity constrained to
|ω| < 2. For top quark events, a valid jet must be located within !R = 0.8 of a hadronically
decaying top quark, with all three decay products of the top also confined within !R = 0.8
from the jet axis. The primary background process considered is QCD dijet production.
This dataset consists of one million tt̄ events and an equal number of QCD dijet events.
Following the standard data split, we allocate 1.2 million events for training, 400,000 for
validation, and 400,000 for testing. The dataset is widely used in previous studies, allowing
for direct performance comparisons of existing models. 2

Table 1: Performance of di!erent networks for top jet classification. Results for networks
without an asterisk are taken from their respective references. Plain Transformer was
trained from scratch using the structure described in Appendix A.

Accuracy AUC 1/εB(εs = 0.5) 1/εB(εs = 0.3) Parameters

ParticleNet[54] 0.940 0.9858 397 ± 7 1615 ± 93 370K
PFN[53] ↓ 0.9819 247 ± 3 888 ± 17 86.1K
rPCN[69] ↓ 0.984 364 ± 9 1642 ± 93 ↓

Lorentz invariance based networks
PELICAN[35] 0.9426 0.987 ↓ 2250 ± 75 208K
LorentzNet[70] 0.942 0.9868 498 ± 18 2195 ± 173 224K
L-GATr[71] 0.942 0.9870 540 ± 20 2240 ± 70 –

Attention based networks
ParT[49] 0.940 0.9858 413 ± 6 1602 ± 81 2.14M
MIParT[50] 0.942 0.9868 505 ± 8 2010 ± 97 720.9K
Mixer[21] 0.940 0.9859 416 ± 5 – 86.03K
OmniLearn[72] 0.942 0.9872 568 ± 9 2647 ± 192 1.6M
Plain Transformer→ 0.927 0.979 362 ± 7 780 ± 73 1.7M
IAFormer→ 0.942 0.987 510± 6 2012± 30 211K

Table 1 presents the classification performance of IAFormer for top jet classification.
IAFormer is trained for 23 epochs, with a batch size of 256, with early stopping set for
5 epochs. The AdamW optimizer [73] with an initial learning rate of 5 ↔ 10↑4 and the
Cosine annealing scheduler is used to adjust the learning rate during the training. Two
input datasets are considered, particle kinematics, with dimensions X = (100, 11), with a
maximum of one hundred particles and 11 features per particle. A second dataset of the
pairwise interaction I, which encodes 6 features for each particle pair and total dimension
(100, 100, 6). Other networks are trained with the same hyperparameter setup, but trained
for 20 epochs. After training, the network performance is evaluated using various met-
rics, including classification accuracy, Area Under the ROC Curve (AUC), and background
rejection at signal e"ciencies of 0.3 and 0.5.

2
It should be noted that there is an e!ective class imbalance near the top quark mass. The tt̄ sample

exhibits a pronounced peak around 170 GeV, whereas the mass of the QCD jets is concentrated near zero,

resulting in a tiny overlap between their distributions. This disparity makes it particularly challenging to

discern fine-grained di!erences among high-performance neural networks. Therefore, we use several measures

to compare the network performance.
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TRANSFORMER VS PHYSICS 

1. fast, lightweight, while keeping  performance Reduction of network parameter 2M→100k  

Incorporate physics picture, Cross attention between subjet vs hadron   inspired by  QCD 
scaling behavior 　　MIXER network  arXiv 2404 14677  JHEP 06 (2024) 176   

2. Jet analysis → event analysis.   analysis of H→hh arXiv 2401.00452 JHEP 03(2024)  

3. Respect symmetry   Replacing “attention from generic features” →“pairwise boost 
invariant  information “  (IAFormer)  

      Reduce valiance in training 　→ via differential attention  arXiv 2505.03258 

4. Identify the key parameters for classifications  → via comparison with the simple MLP 
model using High leavel features 

5. calibration of MC in future.   arXiv 2312.11760 JHEP 07 (2024) 146  arXiv 2503.01452 JHEP(accepted) 

With Ahmed Hammad 

With Sung Hak Lim 



    1. PARTON SHOWER AND NETWORK STRUCTURE 
“Ahmed Hammad , MN “Streamlined jet tagging network assisted by jet prong structure"  arXiv 2404 
14677  JHEP 06 (2024) 176  

• Hard Process = Partons(quarks and gluons)  {y}  

• a jet:   P(hadrons in jets | parton ~ jet ) =  

•  jet with substructure           

• Maybe  several  fatjets in an event (factorization)      

       

P({xi} |{y})

P({xi} |{yα})

P({xi}, {x′￼j}, {yα}, {y′￼β}) ∼ P({xi} |{yα})P({x′￼i} |{y′￼β}) P({yα , y′￼β})

Why don’t we  construct the network forcusing on parton(subjet) vs hadrons 

https://inspirehep.net/literature/2780028


ATTENTION →CROSS Attention for P(h| subjets)  estimation  

REPEAT 
& Global MAX  

pooling  
→MLP 

Subjets (V, K)~ parton information

Placeholder title: Title

A.Hammad
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1, 2, 3, †

1
Theory Center, IPNS, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.

2
The Graduate University of Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.

3
Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan.

(Dated: March 18, 2024)

Needed plots:

1. Network plot

2. minimum spanning tree + hierarchical dendogram (on how the hdbscan work)

3. four plots for subjets clustering for the top case

4. ROC for varying radius from 0.1 to 0.5 using CA

5. plot for the input subjets for the top and qcd jets

6. plot for the cross attention

7. ROCs for every thing.

PACS numbers:

I. INTRODUCTION
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⇤Electronic address: hamed@post.kek.jp
†Electronic address: nojiri@post.kek.jp

multihead cross attention 

MLP mixer 

skip connection  X̃ = X + Oinput X 

A = Q × KT

Q 

 Z(i) = A(i)V
O = ∑ A(i)VW(i)

(Extract global information)

QCD threory! 



 CROSS ATTENTION LAYERS 
• restrict network to cross attention  
(subjet) x (jet constituent)    

• jet constituent    Q   

• subjet ~ parton, shower  K V   

•  Structure: High scale feature (subjet) 
gives extra weight to  jets constituents 

A = QKT

i n

n

QKT

subjet   
kinematics 
 

Q K

cross  
attention 
matrix 

jet  
constituents 

n

i

jWQ
WK

WV

f

n

f

i

i
f

output 

V
f f The performace is not reduced  

significantly from Transformer  
while  networks size is  very small 
 becuase  we respect QCD 



2. CROSS ATTENTION AND GLOBAL EVENT KINEMATICS 

Caterina Vernieri  ・ LCWS 2024 ・ Tokyo

X→HH

H(bb̄)H(bb̄) most sensitive channel 
for mX > 400/500 GeV
H(γγ)H(bb̄) complement in the low 
mass

H(γγ)H(bb̄) 

H(bb̄)H(bb̄) 

Phys. Rev. Lett. 132 (2024) 231801
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cross attention motention for 2 fatjet events 

step  2 :multihead cross attention 
transform jet kin by  

cross Att. [substracture]x [jet kin] 

step 1 : multihead self attention 
[substructure ]x[substructure]  

[jet kin]x [jet kin]We can replace  
transformer to  
“mixer+subjet”  

network   
1st Leading 

jet 
2nd leading  

jet 
jet  

kinematics 

Transformer Transformer Transformer

ADD

CROSS ATTENTION

MLP & softmax •  jet constituent information  
relevant gives extra weight to 
the corresponding jets though 
backward propagation



IMPROVEMENT USING CROSS ATTENTION COMBINIE TO NEXT 
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Figure 6: Left: The Receiver Operating Characteristic (ROC) curves for the four networks
for the signal BP with mH = 1 TeV. Right: 95% upper limit on the total cross section for
the process gg æ H æ hh (having factored out the SM-like h æ bb̄ decays) at the HL-
LHC with integrated Luminosity 3000 fb≠1 for di�erent ML analyses. The band for each
plot represents the upper and lower values for 5 independent training of di�erent randum
number seeds, and the middle line represents the central values. The ATLAS limits are
extracted from the latest analysis in [44] and linearly scaled to the integrated luminosity of
3000 fb≠1.

exclusively on kinematic information. Replacing the cross-attention layer with a simple
concatenation layer results in a degradation of classification performance by approximately
≥ 4%, as depicted by the green line in the plot.

In the right plot, we present the 95% upper limit on the production cross-section at
the HL-LHC for heavy scalar mass ranges between 600 ≠ 2000 GeV. The dashed black line
represents the limit for the ATLAS analysis [44], with linear scaling of the integrated lumi-
nosity to 3000 fb≠1. For lower masses, mH Æ 1 TeV, all the used transformer models show
enhanced performance over the ATLAS analysis, exhibiting over 10 times better sensitivity.
For larger masses, for which the reconstructed kinematics of the signal are faithful to its
true structure with vanishing background events, the performance of the transformer mod-
els saturates. In fact, for the limit, e.g., mH = 2 TeV, the background events can be easily
removed with a simple cut on the reconstructed distributions of the signal events, which
exhibits a clear di�erence from the background distributions. The transformer network
trained on the jet constituents only does not show a large impact with varying the heavy
scalar mass.

The network performance is subject to training uncertainty and the statistical uncer-
tainty coming from limited training and testing samples. For example, the network perfor-
mance can be influenced by the the random partitioning of the training and test data sets,
and the network performance varies when repeating the training and test steps with new
splits. We repeat the experiment for k times and report the results as bands between the
highest and lowest values. In our results, we use k = 5, and the bands represent the values
of the di�erent represented experiments.

As for optimizing the signal-to-background yield, we enforce a cut on the networks
output score to keep only 20 events of the background. With this choice, we alleviate
the statistical errors that may occur for lower background[88]. The optimized signal and
background events are used to derive the upper limit using the following formula [89]

ZA =
C

2
A

(Ns + Nb) ln (Ns + Nb)(Nb + ‡
2
b
)

N
2
b

+ (Ns + Nb)‡2
b

≠
N

2
b

‡
2
b

ln(1 + ‡
2
b
Ns

Nb(Nb + ‡
2
b
))

BD1/2
, (14)

with Ns and Nb being the number of signal and background events, respectively, and where

14

factor 5 improvement at the same acceptance. 

Cross attention  improves the  rejection  
efficiency significantly



NETWORK BUDGET BEHIND CROSS ATTENTION

A V  = Q(Sub) x K(Sub ) Q(particle ) x 
K(Sub) 

Q(Sub) x 
K(particle ) 

Q(particle) x 
K(Particle) 

V = Q(sub) K(sub) V(sub) +….  ( )
our network kill this term 

 and keep off-diagonal part only 

Isn’t that good enough to add subjet  information to particle and do transformer ?

Dominant contribution Loss function 

1. optimization of main term 

2.  Lost in minor term optimization 



 3. (IAFormer =InterAction transFormer) 

Transformer Input:     

BUT we only want to use lorentz covariant or boost invariant for LHC) 
information  

     

so using  is too much…   

Lorentz covariant network is proposed  and performance is high. but boost 
invariance is also known to be useful at LHC

η, ϕ, pT . . .

ΔR = (η − η′￼)2 + (ϕ − ϕ′￼)2 z = min(z1, z2)/(z1 + z2) . . .

K = WKV, Q = WQV

 α = softmax ([Q × KT]n×n) → α = softmax(ℐn×n)

: function of pairwise variable  ℐ



STABILITY OF THE TRAINING—SPARSE ATTENTION

• Sparse attention: a rule to use only part of attention 
matrix for quick convergence and reasonings  

• static attention—use “fixed patterns” to filter 
attention   

• This is probably very important for Language model 
but does not looks right for particle physics.  

•   band attention   “大きなりんご　big apple” “赤い
りんご　red apple”   

•  Dilated attention　赤いりんご　が　落ちた　のを　
みた (I saw a red apple falling ) 

https://developers.agirobots.com/jp/sparse-attention/



DIFFERENTIAL ATTENTION AN EXAMPLE OF DYNAMIC ATTENTION 

•  →  α = softmax(ℐ) α(i) = softmax(ℐ(i)
1 ) − β(i)softmax(ℐ(i)

2 )

cancel the irrelevant information 

ℐ(1), β(1) ℐ(3), β(3)ℐ(2), β(2)

Each layer built different filters  dynamically 

strength

• Dynamic attention “ask network to learn viable sparse attention pattern”  

•  We introduce a new dynamic attention called “differential attention” to the network. 
arXiv:2410.05258 



EFFICIENCY AND INTERPRETATION 

11

TABLE I. performance of the Mixer network for top quark tagging compared with other models. Results for EDI-net [44], Point
Cloud Transformer (PCT) [45], Lorentz Net [28], PELICAN [46], PFN [36], ParticleNET [37], and ParT [38] are quoted from
their published results. Pretrained ParticleNET and ParT have higher performance with AUC = 0.9866 and AUC= 0.9877,
respectively. The pertaining is done on the JETCLASS dataset, followed by the tuning to the top dataset. Transformer(subjet)
model is trained from scratch using the CA subjets dataset only. Training time is per epoch with a batch size of 1024. The
GPU training time is measured on an NVIDIA RTX A6000 card.

AUC Rej50% Parameters Time (GPU) [s]

JEDI-net with
P

O 0.9807 � 87.7K �

PFN 0.9819 247±3 86.1K 30

PCT 0.9855 392± 7 193.3K �

LorentzNet 0.9868 498± 18 224K �

ParticleNET 0.9858 397± 7 370K �

PELICAN 0.9869 � 45K �

ParT 0.9858 413± 16 2.14M 612

Transformer(subjets) 0.9640 186± 11 398K 129

Mixer(Anti-kt) 0.9854 375± 5 86.03K 33

Mixer(CA) 0.9856 392± 6 86.03K 33

Mixer(HDBSCAN) 0.9859 416± 5 86.03K 33

shortest training time but lacks learning of the local in-
formation shared between particles and their neighbours,
leading to relatively poor performance.

VI. INTERPRETABLE ML TECHNIQUES

ML models’ interpretability can be challenging due to
their intricate hidden layers. Understanding the model’s
architecture and learned representations is crucial for ac-
curate predictions.

Various interpretable ML methods have been devel-
oped to provide insights into how models make predic-
tions. This helps to validate model decisions. In this
section, we employ two methods that o↵ers a straight-
forward interpretation of the network outcomes, namely,
Central Kernel Alignment (CKA) and attention map vi-
sualization. CKA is a metric used to compare the sim-
ilarity between two sets of learned representations in a
high-dimensional feature space. It was first introduced
in [63] and used in collider analysis in [64].

It measures the representations learned by the net-
work layers or hidden layers of di↵erent models, consider-
ing local similarities and global structure. On the other
hand, attention maps are visual representations gener-
ated by attention mechanisms in neural networks, high-
lighting the input data most relevant for making pre-
dictions. They provide insights into the focuses of the
model during processing, aiding in the interpretation of
the decision-making process.

In the following, we apply those interpretable meth-
ods to the Mixer network trained on t a jet constituents
dataset with dimensions (100, 7) and a subjets informa-
tion with dimensions (15, 7) clustered using the CA al-
gorithm with R = 0.3. Importantly, these interpretable

methods are agnostic to the specific network configura-
tion and can be applied to other results presented in this
paper.

A. CKA similarity

CKA similarity, rooted in the principles of kernel meth-
ods and alignment-based metrics, o↵ers a comprehensive
framework for assessing the similarity between two sets
of representations learned by di↵erent models or layers
within a model. It measures the alignment between rep-
resentations in a high-dimensional feature space rather
than simply comparing their values. Unlike linear simi-
larity measures such as Pearson correlation or Euclidean
distance,

CKA captures complex relationships between repre-
sentations learned by di↵erent models or layers, making it
suitable for comparing high-dimensional and non-linearly
transformed data. The primary obstacle in analyzing
the representations of hidden layers in neural networks is
the dispersion of features across neurons, with sizes often
larger than the input dimension and varying in layers or
models.

CKA facilitates quantitative comparisons of represen-
tations both within individual networks and across dif-
ferent models. This can be done by considering the acti-
vation matrices of two hidden layers X and Y evaluated
on the same input dataset; when the data size is d, and
P1 and P2 is the number of neurons of the two di↵erent
hidden layers, X 2 Rd⇥P1 and Y 2 Rd⇥P2 . The CKA
similarity is defined as

CKA(M,N) =
HSIC(M,N)p

HSIC(M,M)HSIC(N,N)
, (19)

input 

Network1  

hidden layer 

Network 2  

hidden layer 

d event 

 
→  
X(d × h1)

M = XX† (d × d)

Y(d × h2) → N = YY† (d × d)

output 
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where M = XX
T and N = Y Y

T are two Gram matrices
of the two hidden layers with d⇥d dimension. The size of
the Gram matrices depends only on the number of inputs,
therefore, the CKA(M, N) can be used to compare any
layers with di↵erent numbers of neurons or networks of
di↵erent models.

The Hilbert-Schmidt Independent Criterion (HISC)
[65] between two matrices is defined as

HSIC(M,N) =
1

(d � 1)2
Tr(MHNH) , (20)

where a d⇥d centering matrix H is defined as Hij = �ij�

1/d, therefore
P

i AHij =
P

j aHij = 0 for A = M, N .
Centering the matrices ensures that the CKA similarity
is not overly influenced by outliers or extreme values in
the data, leading to more robust comparisons between
representations.

The value of the CKA ranges between [0, 1]. A higher
CKA value suggests that these layers have captured re-
dundant information from the input features. If two sub-
sequent layers are similar in the CKA, it indicates the
second layer leads to negligible improvement in classifi-
cation accuracy. In such instances, trimming these layers
can reduce model complexity without compromising clas-
sification performance. Conversely, the layers with lower
CKA values have captured distinct information from the
data, and enhanced the classification performance

FIG. 9. The CKA similarity of top jet events (top plot)
and QCD jet (bottom). Axes represent the network layers.
FC(MLP1) and FC(MLP2) are the fully connected layers in
the first and second MLP of mixer layers, respectively. The
last FC represents the last FC layer in the network, and At-
tention is the multi-heads cross-attention.

The CKA results are depicted in Fig. 9, showing the
top jet events in the upper plot and QCD jet events in the
lower plot. The analysis is based on a sample of 5000 test
events, with the subjets dataset clustered using the CA
algorithm with R = 0.3. CKA values are computed for
distinctive model layers, including the embedding layer,
the two FC layers for the first and second MLP mixer, the
multi-head cross-attention layer, and the final FC layer.

In general, layers with low correlations imply that they
capture independent information from each other, under-

scoring their significance in the network’s decision mak-
ing process, see for example figure 3 in [63].

The multi-head cross-attention layer shows lower simi-
larity with the two MLPs for the top jet with CKA value
30% and 57% for the QCD jets. The top jet CKA values
are lower than QCD ones, which suggests the network
layers are adept at capturing distinct information and
are capable of learning the substructure of the top jet.
The MLP mixer layers must have focused on the other
features of the model. The first and second MLP mix-
ers exhibit low similarity. Specifically, for top events, the
two MLPs demonstrate lower CKA values around 58%
compared to the QCD events with CKA value 76%, sug-
gesting that the network has learned a specific internal
structure unique to top events.

B. Attention maps

Attention maps visualize the attention scores assigned
to each particle token in the input sequence, providing a
representation of where the model focuses its attention
during the decision making process[66].

Also, it reveals the relation between particle tokens.
For instance, it highlights the information extracted

from the jet constituents relevant to the clustered subjets.
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FIG. 10. Cross-attention maps for 50000 test events of top
(top plot) and QCD (bottom plot) averaged over 15 atten-
tion heads. The X-axis shows the attention score for the first
transformed 30th jet contents, while the Y-axis shows the at-
tention score for the transformed subjets.

Fig. 10 presents the cross-attention maps for a sam-
ple of 50,000 test events, showing top jet events in the
upper plot and QCD jet events in the lower plot. As

H = δij −
1
d

CKA <<1 if  new information is captured   

Compare hidden layers using CKA(centered kernel alignment) similaity 

Similarity of Neural Network Representations Revisited

Figure 3. CKA reveals when depth becomes pathological. Top: Linear CKA between layers of individual networks of different depths on
the CIFAR-10 test set. Titles show accuracy of each network. Later layers of the 8x depth network are similar to the last layer. Bottom:
Accuracy of a logistic regression classifier trained on layers of the same networks is consistent with CKA.

Figure 4. Linear CKA between layers of a ResNet-62 model on
the CIFAR-10 test set. The grid pattern in the left panel arises
from the architecture. Right panels show similarity separately for
even layer (post-residual) and odd layer (block interior) activations.
Layers in the same block group (i.e. at the same feature map scale)
are more similar than layers in different block groups.

network, accuracy plateaus less than halfway through the
network. When applied to ResNets (He et al., 2016), CKA
reveals no pathology (Figure 4). We instead observe a grid
pattern that originates from the architecture: Post-residual
activations are similar to other post-residual activations, but
activations within blocks are not.

CKA is equally effective at revealing relationships between
layers of different architectures. Figure 5 shows the relation-
ship between different layers of networks with and without
residual connections. CKA indicates that, as networks are
made deeper, the new layers are effectively inserted in be-
tween the old layers. Other similarity indexes fail to reveal
meaningful relationships between different architectures, as
we show in Appendix F.5.

In Figure 6, we show CKA between networks with differ-
ent layer widths. Like Morcos et al. (2018), we find that
increasing layer width leads to more similar representations
between networks. As width increases, CKA approaches 1;
CKA of earlier layers saturates faster than later layers. Net-
works are generally more similar to other networks of the
same width than they are to the widest network we trained.

Figure 5. Linear CKA between layers of networks with different
architectures on the CIFAR-10 test set.

Figure 6. Layers become more similar to each other and to wide
networks as width increases, but similarity of earlier layers satu-
rates first. Left: Similarity of networks with the widest network
we trained. Middle: Similarity of networks with other networks
of the same width trained from random initialization. All CKA
values are computed between 10 networks on the CIFAR-10 test
set; shaded regions reflect jackknife standard error.



IAFormar constantly improve classification performance 

CKA values range from 0 to 1, where higher values indicate strong similarity between
learned representations. If two consecutive layers have high CKA similarity, it suggests
that the second layer does not significantly enhance classification accuracy, implying that it
could be removed without a!ecting performance. On the other hand, layers with low CKA
similarity capture distinct aspects of the data, contributing to improved model performance
by learning complementary features.
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Figure 5: Linear CKA similarity for IAFormer (left), Transformer +Ii,j (middle), and Plain
Transformer (right) using 1000 test events from the top jet dataset. The axes represent the
attention layers in each network, while the colour bar indicates the CKA values.

We compute the output from each attention layer with dimensions (100, 32), where the
first dimension corresponds to the number of particles and the second represents feature
embeddings. To construct the Gram matrices, M and N , we consider 1000 test events and
average over the feature dimension, resulting in Gram matrices of size (1000, 1000). These
matrices are then used to compute the CKA values for three di!erent networks, IAFormer,
Transformer with an interaction matrix( similar to ParT), and Plain Transformer, as shown
in Figure 5. For a fair comparison, all networks are trained with 12 attention layers,
represented on the X and Y axes of each plot.

Attention layers of IAFormer exhibit lower CKA values, particularly in the first four
layers, with CKA values ranging from 0.5 to 0.8. This suggests that these layers capture
di!erent patterns in the jet constituents, contributing to an overall improvement in classifi-
cation performance. The later layers exhibit stronger internal similarity, with CKA values
exceeding 0.8. The CKA structure indicates an e"cient flow of attention from the early
layers to the final ones. The middle plot presents the CKA values for the Transformer
incorporating the interaction matrix. The CKA matrix exhibits a block-diagonal structure,
where the first four layers demonstrate strong internal similarity but di!er significantly from
the remaining layers. Additionally, the last four layers encode nearly identical information,
with a CKA value of 1. In contrast, Plain Transformer shows consistently high similarity
across all layers, with CKA values ranging from 0.85 to 1. This uniformity likely contributes
to its lower performance in the top tagging task compared to other networks.

Overall, Plain Transformer and Transformer+ Iij stop improving the first 6 layers, while
IAFormer steadily improves for all layers, with stronger suppression of the fluctuation by
larger ω layer by layer, likely building global variables along the increasing layers.
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BEHAVIOR OF DYNAMIC FILTERS 

IAFormer outperforms other attention-based Transformer networks, although it has an
order of magnitude smaller parameter size of 211K than ParT. This reduction in network size
is achieved by replacing the Q and K matrices with an interaction matrix, where attention
scores are primarily based on pairwise particle interactions. Furthermore, the use of sparse
attention enables the network to suppress attention scores of less relevant tokens, reducing
the need for excessive model complexity, while e!ciently distinguishing between top and
QCD jets. This is reflected in the network training uncertainty, which IAFormer is very
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Figure 2: The left plot shows the ω distribution across the twelve IAFormer layers for
di"erent seed numbers on the test dataset. The right plot illustrates the uncertainty in
the network output when trained with di"erent seed numbers, 42, 0, 7, 123, and 12345.
The results of the architectures of the Transformer +Iij(similar to ParT) and the plain
Transformer are shown. The uncertainty is reported in terms of background rejection at
0.3 signal e!ciency.

robust against numerical fluctuation. The right plot of figure 2 illustrates the fluctuation
of the background rejection at 0.3 signal e!ciency with the di"erent seeds for the network
parameter initialization. Furthermore, IAFormer exhibits robustness against the change of
the seed number with a fluctuation range of 150 while plain Transformer has a fluctuation
range of 600, and Transformer with interaction matrix(ParT) has a fluctuation range of
550.

The core component of the dynamic sparse attention is the inclusion of the learnable
parameter ω, which regulates the level of suppression of less relevant tokens. The left plot in
Figure 2 illustrates the distribution of ω across all IAFormer layers. To better understand
the role of ω, we analyze three di"erent random seeds. Interestingly, all distributions exhibit
a similar pattern: ω values increase in the initial layers, reach a maximum value, and then
decrease in the later layers. Network classification accuracy improves for higher ω; the blue
line corresponds to the best classification accuracy of AUC=0.98678, with ω value very close
to 0.6. It also starts at a lower value for earlier layers. This shows that the earlier layer tries
to build collective quantities stable against fluctuations, and the rest of the information is
abandoned in the later layers dynamically for successful training.

3.3 Quark gluon tagging

The quark jet and gluon jet are expected to show distinguishable features due to di"erent
fragmentation patterns arising from the color di"erence. The quark-gluon tagging is phe-
nomenologically important because BSM particles tend to emit high-energy quarks rather
than gluons. The public dataset [66] is generated using Pythia8 [67], where quark(gluon)
jets originate from Z

0 boson plus quark(gluon) process. The dataset contains not only
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3.3.2 two-point correlation spectrum S2

Top jets often have two or three substructures as they decay into a bottom quark and
two light quarks. Therefore, structure in two-point and three-point energy correlation is
essential to discriminate top jets from QCD jets. We use IRC safe two-point correlation
spectrum, which is defined as follows[9, 20, 32, 33],

S2,ab(R)
def
=

X

i2a

X

j2b
pT,ipT,j�(R�Rij). (3.6)

Here, a and b are labels for subsets of jet constituents, i and j are labels for their constituents
and Rij

def
=

p
(⌘i � ⌘j)2 + (�i � �j)

2. Notably, all EFPn
2 information is included in S2,ab.

The structure indexes a, b 2 {Jtrim,Jc
trim

def
= J � Jtrim} or a, b 2 {Jlead,Jc

lead

def
=

J � Jlead} and we call corresponding S2 inputs as xtrim and xlead. These are collectively
referred to as xS2 . The S2 is binned by �R = 0.1. S2s are compressed compared with
sparse jet images. The correlation involving Jc

trim
and Jc

lead
is formally IRC safe, but it

emphasizes the effect of soft particle distributions.
The module of the networks that further compresses the S2 information is a simple

MLP with two hidden layers. The inputs are combined with xkin as shown in Fig.3a. Two
sets of outputs of dimension five each goes into the final convolution layers ;

ztrim = �
trim

(xtrim, xkin)

zlead = �
lead

(xlead, xkin).

See [9] for the detailed setup of the network.

(a) A schematic diagram of S2 module (b) A schematic diagram of subjet recursive

module

Figure 3

3.3.3 subjet recursive module "subj"

If the moment of the subjet is added as an input, information about the exact location of
the subcluster can be included. The k-th subjet information xsubj,k includes the transverse
momentum of the subjet of radius Ri where Ri is the cone size of the subjet, R = 0.1, 0.2,
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Energy flow polinomials 
4

III. APPLICATION TO TOP-TAGGING

A. Data set

We study the performance of the DisCo-Feature Selec-
tion algorithms on the top quark tagging landscape data
set [1, 54]. This data set contains boosted, hadronically-
decaying top jets as signal, and QCD (i.e. light quark
and gluon) jets as background, which are generated us-
ing Pythia8 [55], with a center-of-mass energy of 14 TeV.
Multiple interactions and pile-up are not included in this
data set. The detector simulation is done using Delphes
[56], with the ATLAS detector card. FastJet [57] is
used to create jets using the anti-kT algorithm [58] with
R = 0.8. Only jets in the pT range [500, 650] GeV, and
|⌘j | < 2, are considered. The data set contains only
kinematic information, in the form of energy-momentum
four-vectors of all the reconstructed particles in each jet,
which are extracted using the Delphes energy-flow algo-
rithm. No additional tracking information or particle
information is included.

The full data set contains 2 million events, with 1 mil-
lion signal events and 1 million background events. This
data is split into 1.2M events in the training set, 400k in
the validation set, and 400k in the test set, each set con-
taining equal number of signal and background events.

B. Feature Space

For top-tagging we start with

Finitial = F3 = {mJ , pT , mW�candidate} (4)

where mJ is the mass of the jet, pT is the transverse
momentum of the jet and mW�candidate is the mass of
the W -candidate in the jet, calculated with a very sim-
ple method: we recluster each fat jet using the exclusive
kT algorithm with R = 0.3 into exactly three subjets.
Then we pick the pair of subjets whose invariant mass
comes closest to mW . This pair of subjets gives us the
W -candidate and their mass is mW�candidate. The dis-
tributions of the initial features are illustrated in Fig. 3.

We then apply feature selection algorithms to a large
set of Energy Flow Polynomials (EFPs)[31]. EFPs are
functions of energy fractions and angular separation of
jet constituents:

z()a =

0

@ pT aP
i2J

pT i

1

A


, ✓(�)ab = (�⌘2
ab + ��2

ab)
�/2, (5)

where pT a is the transverse momentum of the ath jet
constituent, and the denominator in za is summed over
all jet constituents in a jet J . EFPs have a one-to-one
correspondence with a graph G:

X

a2J

z()a ! (each node), ✓(�)ab ! (each edge) (6)

Thus given a graph G, with N nodes and edges (m, `) 2
G, the EFP is:

EFP(,�)
G =

X

i12J

· · ·
X

iN2J

z()i1
· · · z()iN

Y

(m,`)2G

✓(�)imi`
. (7)

The original EFPs [31] were introduced as IRC-safe
observables, with  = 1. However in our feature space
we are motivated by [30] to consider other values of 
as well. Following [30],2 we use Energy Flow Polynomi-
als with all combinations of d  7, � = [0.5, 1, 2] and
 = [�1, 0, 0.5, 1, 2], which form a space of 7,320 unique
features.

C. Results

1. Ab initio feature selection using truth labels

First, we consider the ab initio feature selection task,
using the truth labels to guide the algorithms so as to
yield the best-possible classifier.

We apply the truth-guided DisCo-FFS and DO-ADO-
FFS3 to the training and validation set, and use the test
set only for evaluating the performance. (Network archi-
tectures and hyperparameters used in this section are de-
scribed in Appendix B.) The performance metric choosen
for top-tagging is R30 (the QCD rejection factor at 30%
top-tagging e�ciency). It allows a better separation of
di↵erent methods as area under curve (AUC) saturates
and is more indicative of the performance at a potential
working point.

As shown in Fig. 4, the R30 value increases as more fea-
tures are added using the two feature selection methods.
This shows that both DisCo-FFS and DO-ADO-FFS are
selecting useful features. After 9 features the perfor-
mance of the features added using the DisCo method
saturates with R30 ⇡ 1250. We also see that our pro-
posed method outperforms DO-ADO-FFS and achieves
a higher R30 at each step.

Any worthwhile feature selection algorithm should do
better than randomly selecting features. To test this, we
randomly select each number of features 10 times, and
use the average and standard deviation of the R30 as our
“random baseline” shown in Fig. 4. Interestingly we see
that the randomly selecting EFPs can also give better
performance, as we add more and more features, but not
as good as the FFS methods.

2With one exception – we don’t include additional features from
d = 8 with c = 4, as [30] do in their analysis. These features
were initially omitted due to di�culties in their calculation. It was
later verified that their inclusion does not significantly alter the
performance of DisCo-FFS.

3We note that in [30], the DO with truth-labels was referred
to as TO (for “truth-ordering”) and it was pointed out that ADO
with truth-labels reduces to the usual AUC metric.



NETWORK USING HL INPUTS VS PARTICLE TRANSFORMER 

3.3.5 Comparison of the performance of ParT and Analysis model

Figure 5: The analysis model (AM) combining xS2 , xsubj, xcount and xMF

In this subsection, we compare ParT and AM classification performance using PY
and HW samples. The results involving the VIN sample are listed in Appendix.C.1. As
described in section 3.3, the Analysis model uses all HL variables with the simple modulated
network shown in Fig.5. Because of the structure of the AM, One can switch off some of
the features of AM to check the contribution. The required GPU resources are small. For
example, AM requires less than 1GB of GPU memory, while ParT requires 14GB of GPU
memory in our training with a batch size of 1000.

Here AM combines the two-point correlation, subjets(including number of subjet con-
stituents), counting, and MF information (xS2 , xsubj(ex), xcount, xMF) by simple modulated
networks as shown in Fig.5.

We list classification performance of ParT and AM for (PT vs PQ), (HT vs HQ), (PQ vs
PQ), (PT vs HT) in Table2. Here AUC, R50% and R30% are defined in Eq.(2.1) and (2.2).
The performance of the classifier differs significantly between PY and HW samples. The
R50% and R30% numbers differ by about 30%, where PY predicts large performance.

The AM model is consistent with the ParT for the classification tasks except PT vs
HT classification that we discuss later. The R50%, and R30%, AM is slightly worse, but
consistent. The difference is less than 5% (10%) for R50%(30%). The largest difference
occurs for R30% = 372 for ParT, 337 for AM for PT vs PQ classification.

The performances are estimated based on the best training results among ten indepen-
dent training using different seeds. Because our QCD training sample is of the order of 30k,
the number of top-like QCD events that satisfy the condition of R30% is only around 1000.
The naive statistical error of the training and testing sample is 3%. Including the uncer-
tainty coming from the minimization of the loss function, the difference is not statistically
significant. In section 4, we estimate the systematical error using a bootstrapping method.

The gap between AM and ParT is large for PT vs HT classification. We tried several
modifications of the Analysis Model but did not find an extension to fill the gap between
AM and ParT. The modification we tried is as follows; 1) Replacing the recursive network
model for xsubj to the dense model where all subjet information isconcatenated. 2) Adding
MFs at an energy threshold of 16 GeV improves the AUC by 0.607. 3) Increasing the depth
of the hidden layer from two to three and concatenating xkin in each layer improves the AUC
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Model PT vs. PQ HT vs. HQ PQ vs. HQ PT vs. HT

R50% R30% R50% R30% R50% R30% R50% R30%

CNN [28] 79.0 318 55.9 219 2.33 4.16 2.57 4.83
IRC-safe AM-PIPs
A) xkin, xS2 71.1 276 49.1 186 2.51 4.63 2.48 4.49
B) xkin, xsubj 75.3 290 52.4 203 2.53 4.75 2.58 4.74
C) xkin, xS2 , xsubj 80.7 316 56.0 217 2.59 4.87 2.64 4.85
IRC-unsafe AM-PIPs
D) xkin, xMF, xcount 57.8 215 40.8 152 2.61 4.96 2.65 4.96
E) D) + xS2 81.2 321 56.5 223 2.74 5.31 2.76 5.19
F) D) + xS2 , xsubj 84.8 341 58.9 234 2.76 5.36 2.78 5.21
Full AM 85.7 343 61.3 244 2.78 5.43 2.82 5.36
ParT [33] 90.5 372 62.6 242 2.77 5.38 3.07 5.94

Table 3. Rejection rates RX% for CNN, ParT, AM, and various configurations of AM-PIPs. The
specific inputs activated in each AM-PIP are listed in the left column. Note that xsubj does not
include subjet constituent multiplicities, while the full AM uses xex

subj that includes the multiplicities.

where TPR is the true positive rate, and FPR is the false positive rate. In this comparison,
the first class is assumed to be the positive class, and the second class is considered the
negative class. We report the performance metrics of AM and ParT that achieved the best
AUC, selected from six AM and ten ParT trainings, each of them trained with different
random seeds, respectively.

In table 2, we see that AM performs almost as well as ParT in our classification tasks,
except for the (PT vs. HT) classification. We will discuss the significance of the differences
in (PT vs. HT) later. The AUCs for top jet tagging are similar, and AM’s AUC is even
a bit higher in (PQ vs. HQ), even though it only uses a few HLFs. However, when AUCs
are close, the corresponding ROC curves may intersect at some point. AUC alone may not
clearly determine the performance hierarchy in these cases.

The rejection rates in table 3 are more precise measures for the performance comparison.
The rejection rates of (PT vs. PQ), (PQ vs. HQ), and (PT vs. HT) show the same trends seen
in the AUCs. But the HW top tagging problem (HT vs. HQ), whose AUC was higher for
ParT, now shows a mixed behavior: R50% is better for ParT, R30% is better for AM. In
summary, AM and ParT show similar performances in (HT vs. HQ), ParT slightly outperforms
AM in (PT vs. HT) and (PT vs. PQ), but AM does slightly better in (PQ vs. HQ). These
experiments indicate that while AM and ParT are comparable in performance, their exact
hierarchy is unclear. In section 4, we will discuss the significance of the differences using
bootstrap methods, but the statistical significance after counting statistical uncertainty and
training stochasticity does not exceed 3σ.

We tested several modifications of the AM, especially for closing the small gap between
AM and ParT in the PY top tagging problem (PT vs. PQ), although HW top tagging and
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QCD  connecting BSM and events 

5.  Calibration of MC data  



Comparison to LEP data

↵s(mZ) = 0.118
Colour is handled using the NODS scheme which gives full colour
accuracy at NLL for global observables (includes those shown)

⌅ Inclusion of NNLL potentially
resolves the issue of needing
an anomalously large value of
↵s(mZ) to achieve good
agreement with LEP data.
(↵s(mZ) = 0.137 in Pythia’s
Monash 13 tune *
arxiv:1404.5630, Skands, Carrazza,
Rojo )

⌅ Some caution needed as no
3-jet NLO matching, which is
known to be relevant away
from the 2-jet region.

⌅ A comprehensive study of
shower uncertainties is still to
be done.

*This should be taken as an average ↵eff
s not an ↵MS

s
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It is time to invest the parton shower and hadronization 
algorithm in the level relevant to DeepLearning Era

PanScale shower reproducing  
 at last! αs(mZ)

https://gsalam.web.cern.ch/
panscales/



TAKE AWAY MESSAGE
1. fast, lightweight, while keeping  performance 

2. Incorporate physics picture　　 

3. Jet analysis → event analysis.(H→hh)  

4. Respect symmetry   Replacing “attention from generic features” 
→“pairwise boost invariant  information “  (IAFormer)  

5. Reduce valiance in training 　 

6. Identify the key parameters for classifications

RESPCETING QCD

Cross attention is important  

Improved stability within DL  

Symmetry 

Identify Important variables in DL era   
Improving MC simulation


