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Phenomenology of Dark Matter appears
in Various Length Scales!
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There are many interesting things but...
perhaps, most interested topic in galactic
astrophysics to high energy particle physicists is...




There are many interesting things but...
perhaps, most interested topic in galactic
astrophysics to high energy particle physicists is...

_about dark matter.




Galaxy rotation curve and dark matter

(figure from Freese, 0812.4005 NGC 6503 from NASA Hubble telescope
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Galaxy rotation curve and dark matter
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NGC 6503 from NASA Hubble telescope

Stars are rotating faster than

expected if we assume only visible
matter are existing in the galaxy.

DARK MATTER!
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Probably, you heard about the dark matter density
on Earth...

How much is the dark matter density at the Solar
location?

The local dark matter density at the Solar location (i.e., in the vicinity of the Sun

within the Milky Way) is typically estimated to be around:
poMme ~ 0.3 GeV/ cm’

This value is based on dynamical studies of the Milky Way's rotation curve and
stellar kinematics. However, there is some uncertainty, and estimates range from

about 0.2 to 0.6 GeV/cm? depending on the specific model and data used.

4 )

About half-proton
in a cubic centimeter box!

Would you

observatio
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Figure 4. Comparison between the circular velocity curve measured from Eilers et al. (2019) (black) and this work (red). The best-fit Einasto DM profile, with
the baryonic model from de Salas et al. (2019), is also shown here. The grey shaded region represents the bulge region, which we do not model due to the
non-axisymmetric potential near the galactic bar. The red shaded region represents the total uncertainty estimate from the dominating systematic sources, as

shown in Figure 5.
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Measuring DM density ...
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In galactic dynamics for studying dark matter,
one important and interesting task is...

Q: How to use
of a galaxy to understand
its galactic dark matter density
with less assumptions?

Dark Matter Halo

?

So we initiated a project ...

https://www.eso.org/public/images/eso1339g/
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Mapping Dark Matter in the Milky Way
using Normalizing Flows and Gaia DR3

M. R. Buckley, SHL, E. Putney, and D. Shih, arXiv:2205.01129, published in MNRAS
SHL, E. Putney, M. R. Buckley, and D. Shih, arXiv:2305.13358, published in JCAP
E. Putney, D. Shih, SHL, and M. R. Buckley, arXiv:2412.14236,
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Hydrodynamics and
Galactic Dynamics

If we consider a galaxy as a
hydrodynamic system N — oo
consisting of stars, phase-space
density of a star (probability of finding
a star with given position and velocity) (&, )
describes the system.

Equation of motion: Boltzmann Equation

o , 0 0 Lo
a—l—v-%—l—a-% f(Z,7)=0

. NN
We can estimate the

gravitational acceleration field!
/\' <

+n0 unnecessary assumptions T
are involved /0

-

If phase-space density
is determined
without assumptions...

r



Outline of Stratec

Galaxy:
hydrodynamic
system

Neural Networks for Density Estimation:
Normalizing Flows

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)

J _, o0 _ 0 Lo
E%—v-%—l—a-% f(Z,7) =0

- A
Star catalog
{(Z,0)} )
- a
Phase space density
f(Z, )

I
Gravitational accel.
a(7)

I
Mass density
p(Z)

. J

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244

Solving Gauss's Equation

—4nGp=V -a
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Normalizing Flows:

Neural Network Iearning a Transformation

Normalizing Flows (NFs) is an artificial neural network that learns a transformation

of random variables.

Base distribution (known) _ Target distribution (data)

count
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W

34 , , . : : 1 LLyg —3

T T
Main idea: if we could find out such transformation, we can use the transformation

150

oL 100

- 5l

|

formula for the density estimation:
y v

Neural Network

d/L_l: — —
— w="T(u
- (@)
This formula can be used for training normalizing flows, too:
Maximum likelihood estimation

pW(?ﬁ) — PU(?Z) '

count
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Training Normalizing Flows
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Training Normalizing Flows
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| earned transformation
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Normalizing Flows:

Neural Network Iearning a Transformation

Normalizing Flows (NFs) is an artificial neural network that learns a transformation
of random variables.

Base distribution (known) _ Target distribution (data)

150

=~ 0 I ‘I l ', L 100

count
count

- 20

- 50
9 - 10 g

~d]
Sy

—3 _ T T T T T 1 1 -3 T T T T T TS {

T T
Main idea: if we could find out such transformation, we can use the transformation
formula for the density estimation:

du
dw

We will use this model for estimating the phase space density f(x,v) from the data!

pw (W) = py () -
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Outline of Stratec

Gaia DR3:

star catalog of
the Milky Way

Neural Networks for Density Estimation:
Normalizing Flows

Uy — Uy —> -+ — Uy = (T, V)

Solving EOM (Boltzmann Equation)

J _, o0 _ 0 Lo
E%—v-%—l—a-% f(Z,7) =0

- A
Star catalog
{(£,0)} )
- a
Phase space density
f(Z, )

I
Gravitational accel.
a(7)

I
Mass density
p(Z)

. J

arXiv: 2205.01129, 2305.13358
See also Green et. al. arXiv:2011.04673, arXiv:2205.02244

Solving Gauss's Equation

—4nGp=V -a
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pom (1072 Mg /pc?)

pom(re) (1072 Mg /pe®)
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Taking the average of the DM mass density at the Solar radius, we
find a local dark matter density: 0.47%0.05 GeV/cm?




Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have an unsupervised ML method to
estimate dark matter density
given stellar distribution of a galaxy.

END of story?

21/70



Dark Matter Halo

https://www.eso.org/public/images/eso1339g/

We have an unsupervised ML method to
estimate dark matter density
given stellar distribution of a galaxy.

END? — Of course not!

22 /70



Simulated
data analysis

Real but clean
data analysis

Real dirty
data analysis




Galactic Dynamics and
Incomplete Datasets

;450001

aar .
i B

One of main challenge of applying this technique
is that the dataset itself is

incomplete!




No time derivative information

45.00

We only have the current snapshot of the Milky Way!




Radial Velocity Distribution
of Gaia DR3
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Not fully covered!
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Intergalactic dust cloud

obscuring light from stars!

Dust Clouds
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Intergalactic dust cloud
obscuring light from stars!

Dust Obscuring Stars




How could we overcome this Intergalactic dust cloud
data incompleteness obscuring light from stars!
due to dust clouds (using ML)? - o7




How could we overcome this Intergalactic dust cloud
data incompleteness obscuring light from stars!
due to dust clouds (using ML)? |

Our group’s student Eric Putney




apping Dark Matter Through the Dust
of the Milky Way Part I:
Dust Correction and Phase Space Densit

E. Putney, D. Shih, SHL, and M. R. Buckley, arXiv:2412.14236,



Erasing Dust using Neural Network

and Equilibrium Assmptions

Dusty Milky Way
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Erasing Dust using Neural Network
and Equilibrium Assmptions

Dusty Milky Way
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g e | Intergalactic dust cloud
o . 3 obscuring stars behind!

e

Bothersome dusts!

So far, we have discussed how to deal with dusty environment
of the Milky Way.



Milky Way

Q: Are there any o
dust-free galaxies to make
this analysis simple?

36/ 70



© MilkyWay

Q: Are there any [P
dust-free galaxies to make
this analysis simple?

Yes, there are some
dust-free satellite galaixes
of the Milky Way!

Where are they? ey




Milky Way

1000 Iy

So far, we have been focused on
the analysis
on our corner of the Milky Way.

If you go further away...

38



So far, we have been focused on
the analysis
on our corner of the Milky Way.

If you go further away, you see

_ whole Milky Way,
| but it is difficult
to get

all the kinematic
information of
stars visible here.

Milky Way

No local dark matter
density estimate on
the opposite corner!

£ Diwarf Galaxy




So far, we have been focused on
the analysis

on our corner of the Milky Way.

If you go further further away,

P You see other
satellite galaxies!

Milky Way
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http://www.atlasoftheuniverse.com/sattelit.html



we will focus on a type of
satellite galaxy called

dwarf speheroidal galaxy.

Milky Way

100 000 Jy
—_— 0,
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Dwarf Spheroidal Galaxy? S

» A round and faint satellite galaxy,
orbiting the Milky Way.

* Almost no gas and dust obscuring
stars. Whole galaxy is clearly
visible.

Mil'k}y" Wav from Ground
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Dwarf SpherOIdal galaxy 1S Clean signal source as

a dark matter laboratory! dsph exhibits

less baryon activity.

. . e o SM
Indirect Detection o S
experiments S e
e SM\

Understanding
the dark matter halo shape

— insights on
DM interactions?

43 /70



Navarro—Frenk—White (NFW) profile

A commonly used

dark matter halo model Doty profs
empirically identified e
in N-body simulations :

L0
2
= (1+ %)
If dark matter exhibits

non-trivial interactions, - 5 f
'the halo shape may vary 10~° 1074 1073 1072 1071 10° 10t

p(r) =

log (p/po)

Self-interacting dark matter, wave dark matter ....

https://en.wikipedia.org/wiki/Navarro%E2%80%93Frenk%E2%80%93White profile 44/ 70



Example: Wave Dark Matter

If DM mass is so light (e.g. very light axions) so that

inter-particle spacing << de Broglie wavelength

DM exhibits wave-like behavior.

Nontrivial stable solution:
Soliton :

- Soliton solution as \/:
2.0 %

a dark matter halo? :
Gravitational

B 3 5, attraction ; H -

Wave
spreading




Smoking gun signatures
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Fig. from talk by Teodori Luca, IBS Let there be light (particles) Workshop
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Need for model-independent analysis

107
108 o
b e —— ULDM center
10° ==
10% g m—— : . 10°]
mu
103 s
102 o -2 E:: 108 -
w)
10! —— 1.20 Gyr \ =
>
10° — 1.21 Gyr \ % i)
o —— 1.23 Gyr \ o
10 \\ A
1.25 Gyr N\
10—2 = 106 3
1.26 Gyr
1073
1075 1074 1073 102 107! 100 10t 107! 10° 10 1072 107! 100
log (r/Rs) r [kpc] r [kpc]

As many non-trivial DM halos are considered nowadays,
we need a free-form DM density estimation in order to do
a model-indepdent DM halo analysis.

Again, unsupervised machine learning
can help solving this type of problem!

47/ 70



|s the ML technique easily applicable to
any of distant dust-free galaxies,

like dwarf spheroidal galaxy?
Answer: both yes and no

Milky Way
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What is the dark rmuater
halo of this galsxy?

+ o . . -

JFlow: Model-Independent Spherical
Jeans Analysis using Equivariant
Continuous Normalizing Flows

Collaboration with
K. Hayashi (NIT, Sendai College), S. Horigome (Tohoku),
S. Matsumoto (IPMU), M. M. Nojiri (KEK),




New Paper!

JFlow: Model-Independent Spherical Jeans Analysis using Equivariant
Continuous Normalizing Flows

Sung Hak Lim, Kohei Hayashi, Shun'ichi Horigome, Shigeki Matsumoto, Mihoko M. Nojiri

The kinematics of stars in dwarf spheroidal galaxies have been studied to understand the structure of dark matter halos. However,
the kinematic information of these stars is often limited to celestial positions and line-of-sight velocities, making full phase space
analysis challenging. Conventional methods rely on projected analytic phase space density models with several parameters and
infer dark matter halo structures by solving the spherical Jeans equation. In this paper, we introduce an unsupervised machine
learning method for solving the spherical Jeans equation in a model-independent way as a first step toward model-independent
analysis of dwarf spheroidal galaxies. Using equivariant continuous normalizing flows, we demonstrate that spherically symmetric
stellar phase space densities and velocity dispersions can be estimated without model assumptions. As a proof of concept, we
apply our method to Gaia challenge datasets for spherical models and measure dark matter mass densities given velocity
anisotropy profiles. Our method can identify halo structures accurately, even with a small number of tracer stars.

Comments: 9 pages, 3 figures, 1 table

Subjects: Astrophysics of Galaxies (astro-ph.GA); Cosmology and Nongalactic Astrophysics (astrg-ph.CO
Physics - Experiment (hep-ex); High Energy Physics - Phenomenology (hep-ph)
Report number: CTPU-PTC-25-15 “.‘
() °
Cite as: arXiv:2505.00763 [astro-ph.GA] “ \", o
| o nec 63
(or arXiv:2505.00763v1 [astro-ph.GA] for this version) C 001

https://doi.org/10.48550/arXiv.2505.00763 @ . \'.')_505 >
aniwve




Challenges in Analyzing dSphs

 Faint galaxy
— less number of observed stars O[100] ~ O[1000]

* Available kinematic information is limited!
- Position of stars on the sky (x,y) (phot.)
- Pistanreeto-thestars(=)

- Radial velocity (v_z) (spec.)

* Phase space density of stars are not accessible, and hence
we cannot solve the equation of motion yet.. (Jeans equation)
on(v;) N 0P on(v;v;)

_ — ()
ot n(?ll?j o c%,,,

Can we recover the full 6D information somehow?

51/70




Radon Transformation

Can we recover the full 6D information somehow?
- Yes, if we have a 3D projected snapshot of the dSph from all the direction

¥ 5 agittariuz
W

Chwarf

- Fornax Dwarf

N
This tomographic recon;#uction is po%siQIe (e.g. MRI imaging),
but we only have a snapshot from only oneirection...
— Classic solution: as;ﬁjme spherical symmetry.

/
) 52 /70




Spherical Jeans Equation

Introducing spherical symmetry simplifies the Jeans equation, too.

d 23

dd

—nv2 4+ Ene2 = —n—

dr r

dr

List of functions needed for inferring gravitational field (®)

* Number density n(r)

 Radial velocity dispersion (variance) 2
’I"

 Velocity anisotropy

(7

v

203 (r )

Note: velocity anisotropy cannot be determined only using line-of-

sight velocity distribution, we will provide the function (can be true or

not) by hand.

Need to estimate 2 functions from data:

n(r)

93/ 70



Normalizing Flows:
Neural Density Estimator

Normalizing Flows (NFs) is an artificial neural network
that learns a transformation of random variables.

Base distribution (known)

3 g

2 200

150

count

- 100

- 50

Main idea: if we could find out such transformation, we can use the transformation
formula for the density estimation:

du
dw

We will use this model for estimating the phase space density f(x,v) from the data!

pw (W) = py (@) -

4/70



Equivariant ()
Continous Normalizing Flows

How to model spherically symmetric density using normalizing flows?
— Use Equivariant Continuous Normalizing Flows!

dx dx

— = F(Z,t > = Pf(T ¢
- Invariant (Gaussian) base distribution
- Equivariant vector field
Base distribution (known) Target distribution (data)
-, § 1 2045

3+ L -3 - —L 0

z This setup is very flexible. You may add
physics constraints to neural networks, t00!




Normalizing Flows: How it works? """

Base distribution
3 J

Normalizing flows can fit
arbitrary probability density,
suitable for model-independent analysis!

i
* result of a continuous normalizing flow learning infinitesimal transformations 56/ 70



n(r)

Cored Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density at r << 0)

- Cuspy density
ex) plummer sphere:

. . I 2\ —9/2
Equivariant CNF for modeling o(r) — (1 . %)

cored density profile re
dr dr |z .
. — (T = rtanh | — ¢
dt Tf('CB? t) > dt rtan (TO )f(x7 )

Transformation at the origin is suppressed, remaining as Gaussian-
shape. — cored density

57 /70



n(r)

Cuspy Spherical Density Model

In dSph analysis, we may further constrain the density model as
conventional analysis often only consider the following
type of densities.

- Cored density (constant density atr << 1)

- Cuspy density

Equivariant CNF for modeling.
cuspy density profile ex) NFW profile:

=) () =

Apply power-law transform to radial component
c+1

‘T‘ — ’7“‘ Jacobianocr_l?fc

to cored spherical symmetric density model
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Velocity Dispersion Estimation

The velocity dispersion can be simply estimaed using Gaussian
model conditioned on position, as the MLE on variance parameter of
Gaussian is a variance estimator.

(v3(r;0) 0 0
Y (r;0) = 0 vg(r;0) 0
\ O 0 v3(r;6) )

Note that only radial velocity dispersion is modeled by a neural
network, others are given by velocity anisotropy function provided.

V3 (r;0) = v3(r; 0) = v3(r;0) - (1 - B(r))
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Here is a 6D density model, but...

Now we have a full 6D phase-space density model ready for solving
spherical Jeans equation.

p(f’) — n(’r; (9) modeled by equivariant CNF for cuspy halos
p(v|r) = GaussPDF (v; u = 0,3(r; 0))

f(7,0) = p(r) x p(v]r)

Wait, we only have x, y, vz.
How can we train this network by MLE?
We cannot use a conventional loss function.
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How to train this model?

E/Iodel parameters Likelihood samples

are defined at here

L Sampling S —
6D space  f(7,U;0) > (750) =T(€0) — |
; o raining samples
Abel Projection are at this Ievelj
\
3Dspace  f(z,y,v.;0) (x,y,v,) = Projsp T'(€;0)
KDE
Convolution Smearing

3D smeared space  f x K (x,y,v,;0) h (x,y,v,)+7, n~K

Do MLE using 3D smeared density
and
measured data!
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Loss Function for Modeling
Dwarf Spheroidal Galaxy

* |n order to train the normalizing flow with spherical
symmetry using limited kinematic information, we
minimize the following entropy:

L(6) :/d?ﬁLp*Kh(zﬁL) logp x Kp (W, ;0)

 Importance sampling: N_T training sample (stars) ~
N_K noise samples ~ K_h

N Ng
1 ~ (a) b
L(0) = logp x K —I—_’()H
() a>lb>1 gp h( )

« KDE for the smeared likelihood model:

N_G generated stars from the normalizing flows~ \hat{p}
N Ng

NNK> >110g—ZKh[H(a)+ﬁ(b) (5(6);9)1)-

a=1 b=1




Results: stellar number density
& radial velocity dispersion

Stellar number density Radial velocity dispersion

10} === Estimated
9F &2 Estimated, model-based

dl? N@ 8 True: analytic
é 10 é - ¢ True: unprojected data
— [ =
T a2 TR 6
= —15T === Estimated, JFlow
o0 _20- t=-= Estimated, param. fittin 5
- True: analytic 4
0 True: unprojected data 3 ¥
—30
2 -
? 0
—2
102 10 100 100 10
r [pc] r [kpc]
Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset —

https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 63/ 70



Results: dark matter mass density

Enclosed mass Mass density

1014 LI 2 | * LI 2 ) ¥ LN A 22 | 1014 LEEE ) ¥ LN A 22 |
=== Estimated, JFlow === Estimated, JFlow
12 e, 12 e, _
10 —=-= Estimated, param. fitting 10 —=-= Estimated, param. fitting
True: analytic o True: analytic
10 10
= 10 = 10
= 5 e
T 10 = 10
SERT = 10°
Y
104 104
102 : : 102
2T . 2
= =
Ay Ay 0
—2
102 101 10° 10! 1( 102 101 10° 10! 102
r [kpd] r [kpc]

Dataset: simulated dwarf spherodal galaxy from Gaia Challenge Dataset
https://astrowiki.surrey.ac.uk/doku.php?id=tests:sphtri 64 /70




Conclusions

* We introduce a model-independent and unbinned spherical Jeans
analysis using normalizing flows, a neural density estimator utilizing
transformation of random variables.

« We invented a loss function for training normalizing flows modeling
dSphs only using projected information, without performing Abel
transformation.

« Using a mock spherical galaxy from Gaia Challenge dataset, we
demonstrated that normalizing flows are capable of estimating phase-
space density information for required solving Jeans equation.

e To do?;

— Generalizing the framework to axisymmetric system.

— Applying our analysis to real dwarf spheroidal galaxies, and
estimate the effect to J-factors when the assumptions are relaxed.
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Future Timeline

2023 pAZ

Gaia DR3

Understanding

DM in dust-free
region (halo, solar
neighborhood

Understanding
DM in dusty
region (disk)

Gaia DR4,
SuperPFS,

and so on\y

More precision
and new
opportunities!
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Prof. David Shih Prof. Matthew Buckley Prof. Mihoko Nojiri Prof. Kohei Hayashi
(Rutgers) (Rutgers) (KEK) (NIT, Sendai College)

Prof. Shigeki Dr. Shunichi
Eric Putney Matsumoto HorigomMe
(Ph.D. student at Rutgers) (IPMU) (Tohoku)s7 / 70



Buliding a regional community:

Al+HEP In East Asia

About Organizers Workshops Seminars Journal Clubs Curriculum Project Board

Organizers

e Tianji Cai A I

e Sung Hak Lim
¢ Vinicius Mikuni
¢ Huilin Qu

Al+HEP in East Asia

AlI+HEP in East Asia Page under construction :)
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Al WANTS)YOU
10,CONTRIBUTE Thank you




Backups
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Various challenging incompleteness!

Disequilibrium Spatial Incompleteness

Lack of information

Only 3D info. available,
not the full 6D PS info.

More challenges
are waiting!




How we infer mass density? = Gravity!

Orbital mechanics

Gravitational
Acceleration

Mass Density

"' 72 /70




Stellar Streams and Machine Learnin

Nibauer, Belokurov, Cranmer, Goodman, Ho, arXiv:2205.11767

Phase-Space
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Preliminary: Dust Correction

Boltzmann equation also provides us an alternative way of measuring

intergalactic dust clouds.

@ . ) Selection Efficiency
Observed density :
of measuring
modeled by
Normalizing flows obscured stars
9 due to dust clouds

NN

fobs(fa 6) ftrue(—)a ) X E(f)

True phase-space
density of stars

0
[77 a %)] ftrue 5777 07 a= —

QD
HL
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Preliminar

: Dust Correction

Boltzmann equation also provides us an alternative way of measuring
intergalactic dust clouds.

/

\

Observed density

T
]

modeled by

Normalizing flows

_

—
Efficiency

obscured stars

due to dust clouds

TN
of measuring

_

<

ftrue(—)a ) X E(f)

True phase-space

density of stars

Linear equation in

™

acceleration and efficiency

J

Solvable by MSE minimization!

S

) — U - aaqloge( ) =

0

75/70



Credit: Eric Putney (Rutgers)

Preliminary: Dust Correction

Boltzmann equation also provides us an alternative way of measuring

d = 3.25 kpe fobs (f7 ?7)

intergalactic dus’

/
Observed densit

modeled by —20 %
Normalizing flov £ 25 8
= —-3.0 _ga
-3.5
- — —4.0
- 180.0 135.0 90.0 45.0 0.0 315.0 270.0 225.0 180.0
fobs (ZC, U) — I (deg)
- — — — —
. d = 3.25 kpe ftrue(xav) — fobs(xav)/e(x)
—1.0
True phase- g
density of . s
3 :
E 0 —2.5 i
- ~15 —3.0 &
a a 5 —3.5
U ’ a—) _|_ a ’ 5 180.0 135.0 90.0 45.0 0.0 315.0 270.0 225.0 180.0 e
T ¢ I (deg)



Credit: Eric Putney (Rutgers)

Magic Dust Eraser

Boltzmann equatic
intergalactic dus’

/
Observed densit
modeled by
Normalizing flov

<

fobs (f, 17) — I (deg)
. d = 3.25 kpe ftrue(fa 17) — fobs(fa 27)/6(51?)

True phase-
density of

S

L /A

L 0
) a — _|_ a ’ 8 - 180.0 135.0 90.0 45.0 0.0 315.0 270.0 225.0 180.0
xr 1 [ (deg)

Work in progress!




10°
102§
10
: 3
(+) Stars are closer, we can observe N :
full kinematics in high precision. REE -
(-) Stars with full kinematics info. SHE
are limited to nearby stars. s 10
-204- 109 70




Milk isn aIa

(+) Stars are closer, we can observe
full kinematics in high precision.

(-) Stars with full kinematics info.
are limited to nearby stars.

(+) Whole galaxy is visible
(-) Only limited kinematic information
is available:

- position on the sky

- radial velocity 79/70



Example: Stellar Distribution and
Merger History of the Milky Wa

Galactic Tidal Streams
— tidally stripped
merged dwarf galaxy

7. =l

Gaia Sausage
. o
— recent major merger e S e
event? Motions of 7,000,000 Gaia stars

)(“\ Wy g am ey

¥ 3

Galact;ic disc

high positive spin

200

R - - — - - - - - - -

-200

These substructures
imprint merger history
of the Milky Way! y :

circular motion, km/s
0

The Séusage

0 the centre of the Galaxy i from the centre of the Galaxy

-200 0 200
radial motion, km/s

>




Example: Stellar Distribution and
Merger History of the Milky Wa

Galactic Tidal Streams
— tidally stripped
merged dwarf galaxy

-
S =
A
!

Gaia Sausage
— recent major merger
event?

These substructures
imprint merger history
of the Milky Way! Z

to the centre of the Galaxy i from the centre of the Galaxy

-200 0 200
radial motion, km/s

AUSINE
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