Novel Neutrino Self-interaction Motivations and Opportunities

The Frontier of Particle Physics: Exploring Muons, Quantum Science and the Cosmos YITP Kyoto 2025

Neutrino Self Interaction

Neutrino Self Interaction

Zvv coupling at LEP is an indirect measurement. Allowed to be much stronger than in the SM. Humans have not built *vv* collider to measure $\sigma_{\nu\nu\to\nu\nu}$ yet.

Neutrino Collisions in the Sky

In ACDM model, neutrinos decouple around MeV temperature, afterwards free stream through the universe.

Stronger self-interaction delays the onset of free streaming.

Notable implications:

- Hint from existing cosmological data (brief).
- Close connection to the origin of sterile neutrino DM.
- Back to Earth, opportunities for future experimental tests.

Motivation from the Hubble "Tension"

more anisotropic

Kreisch, Cyr-Racine, Dore, 1902.00534

A Stone for Two Birds

Kreisch, Cyr-Racine, Dore, 1902.00534

Self-interaction decoupling temperature

$$\begin{aligned} \mathbf{SI}\nu: \quad G_{\mathrm{eff}}\simeq(5\,\mathrm{MeV})^{-2} &\to \quad T_{\mathrm{dec}}\simeq0.5\mathrm{eV} \\ \mathbf{MI}\nu: \quad G_{\mathrm{eff}}\simeq(100\,\mathrm{MeV})^{-2} &\to \quad T_{\mathrm{dec}}\simeq20\mathrm{eV} \end{aligned}$$

Hot Topic

Numerous analyses of existing data (incomplete list):

Kreisch, Cyr-Racine, Dore, 1902.00534; Das, Ghosh, 2011.12315; Hannestad,
Tram, 2012.07519; Brinckmann, Chang, LoVerde, 2012.11830; Kreisch et al,
2207.03164; Das, Ghosh, 2303.08843; Camarena, Cyr-Racine, Houghteling,
2309.03941; He, An, Ivanov, Gluscevic, 2309.03956; Camarena, Cyr-Racine,
2403.05496; Pal, Samanta, Pal, 2409.03712; Racco, Zhang, Zheng, 2412.04959

Evidence of neutrino self-interaction much stronger than in SM, even without addressing the "Hubble tension" i.e. keeping N_{eff}=3.

Will soon learn better, from upcoming cosmological data, ACT, DESI, LSST, Euclid, CMS-S4, Spec-S5 ...

Connection to Dark Matter

Sterile Neutrino as Dark Matter

Introduce a gauge singlet fermion v_s, mix it with SM neutrinos v_a

$$\nu_4 = \cos\theta \,\nu_s + \sin\theta \,\nu_a$$

 v_4 physical mass eigenstate. θ is active-sterile mixing in vacuum, θ is tiny & irrelevant for light neutrino mass generation.

Useful benchmark for warm dark matter analyses in cosmology.

Very simple: only two parameters.

Neutrino Oscillation Phenomena

Success stories

Dark matter from active-sterile neutrino oscillation in early universe? e.g. Dodelson-Widrow mechanism.

Neutrino in Early Universe

 $T \sim 100 \,\text{MeV}, \quad H^{-1} \sim 100 \,\text{km}, \quad l_{\text{mean free path}} < 1 \,\text{m}$

DM Production Rate

Many oscillation baselines: $\Gamma/H >> 1$ before decoupling.

Active-sterile oscillation can take place on every baseline.

$$\frac{df_4}{d\log(1/T)} = \frac{\Gamma}{4H} P_{\nu_a \to \nu_s} f_a$$

Oscillation Probability

On each baseline:

$$P_{\nu_a \to \nu_s} = \frac{\Delta^2 \sin^2 2\theta}{\Delta^2 \sin^2 2\theta + (\Delta \cos 2\theta - V)^2} \equiv \sin^2 2\theta_{\text{eff}}$$

 $\Delta \sim m_4^2/E$: energy difference in vacuum θ : vacuum mixing angle V_T : high temperature potential energy

Wolfenstein, 1978; Notzold, Raffelt, 1988

Oscillation Probability

On each baseline:

 $P_{\nu_{\alpha} \to \nu_{s}} = \frac{\Delta^{2} \sin^{2} 2\theta}{\Delta^{2} \sin^{2} 2\theta + \Gamma^{2}/4 + (\Delta \cos 2\theta - V)^{2}} \equiv \sin^{2} 2\theta_{eff}$ $\Delta \sim m_{4}^{2}/E: \text{ energy difference in vacuum}$ $\theta: \text{ vacuum mixing angle}$ $V_{T}: \text{ high temperature potential energy}$

Hard scatterings (quantum Zeno effect)

Wolfenstein, 1978; Notzold, Raffelt, 1988

Dodelson-Widrow Mechanism

Dodelson, Widrow, hep-ph/9303287

Dodelson-Widrow Mechanism

Dodelson, Widrow, hep-ph/9303287

X-Ray Line Search Limits

Abazajian, 1705.01837

DES limit: ultra-faint MW dwarfs

DM free streaming suppresses matter power spectrum at large k. $\Rightarrow m_4 > 50 \text{ keV}$

DES collaboration, 2008.00022

D-W Mechanism Firmly Excluded

Lepton Asymmetry Cannot Save

Shi, Fuller, astro-ph/9810076; DES collaboration, 2008.00022

A Useful Question

Does any oscillation mechanism for SvDM work at all?

... that will continue to guide astro and cosmo probes,

& offer new opportunities for terrestrial probes.

A Simple Idea

$\Omega_4 \propto [weak interaction rate] \times \sin^2 2\theta$ total

Intuition: compensate smaller mixing with larger reaction rate.

Rule of game: new physics enhances Γ but without introducing additional contribution to DM radiative decay rate.

Particles in early universe plasma T~100 MeV: e, μ, u, d, γ, v

A Simple Model

 $\mathcal{L}_{int} = \lambda \nu^2 \phi + h.c.$ $= \lambda \overline{\nu}^c \mathbb{P}_L \nu \phi + h.c.$

 ϕ is a complex or real scalar, SM singlet, light, has no VEV.

Hold on to your curiosity about gauge invariance.

Self-interaction effectively creates more baselines for activesterile oscillation to take place in the early universe.

Heavy Mediator Scenario

Light Mediator Scenario

When $T > m_{\phi}$, neutrino scattering dominated by on-shell ϕ

Light Mediator Scenario

When $T > m_{\phi}$, neutrino scattering dominated by on-shell ϕ

Three Regimes

hold θ and m_4 fixed

de Gouvêa, Sen, Tangarife, YZ, 1910.04901

Numerical Result

Varying θ and m₄, S shape curve sweeps across the plane

de Gouvêa, Sen, Tangarife, YZ, 1910.04901

Open up Wide Parameter Space

de Gouvêa, Sen, Tangarife, YZ, 1910.04901

What about the DES Constraint?

Each model point predicts a DM phase space distribution.

An, Gluscevic, Nadler, YZ, 2301.08299

vSI Can Save Sterile Neutrino DM

Lower bound on sterile neutrino dark matter mass, $m_4 > 37.4$ keV.

An, Gluscevic, Nadler, YZ, 2301.08299

vSI Can Save Sterile Neutrino DM

Lower bound on sterile neutrino dark matter mass, m₄ > 37.4 keV.

An, Gluscevic, Nadler, YZ, 2301.08299

Known Limits

Barger, Keung, Pakvasa, 1982 Heintze et al, 1979; PIENU, 2020; NA62, 2021

Mono-Neutrino Signal

Beamstrahlung process: $v_{\mu}+N \rightarrow \mu^{+}+N'+\phi$, features

- Missing transverse momentum p_T
- "Wrong-sign" outgoing muon

Kelly, YZ, 1901.01259

Theorists' Simulation

Nucleon level simulation, smearing

$$3\%/\sqrt{E_{muon}[GeV]}, \ 20\%/\sqrt{E_{proton}[GeV]}, \ 40\%/\sqrt{E_{neutron}[GeV]}$$

DUNE CDR, 2015

Useful Probe of Relic Target

Kelly, YZ, 1901.01259

More ideas to explore vSI, see

Neutrino Self-Interactions: A White Paper

Editors: Nikita Blinov, Mauricio Bustamante, Kevin J. Kelly, Yue Zhang

Jeffrey M. Berryman,^{1,2} Nikita Blinov,³ Vedran Brdar,^{4,5} Thejs Brinckmann,^{6,7} Mauricio Bustamante,⁸ Francis-Yan Cyr-Racine,⁹ Anirban Das,¹⁰ André de Gouvêa,⁵ Peter B. Denton,¹¹ P. S. Bhupal Dev,¹² Bhaskar Dutta,¹³ Ivan Esteban,^{14,15} Damiano Fiorillo,^{8,16,17} Martina Gerbino,⁷ Subhajit Ghosh,¹⁸ Tathagata Ghosh,¹⁹ Evan Grohs,²⁰ Tao Han,²¹ Steen Hannestad,²² Matheus Hostert,^{23,24} Patrick Huber,²⁵ Jeffrey Hyde,^{26,27} Kevin J. Kelly,^{4,28} Felix Kling,²⁹ Zhen Liu,²⁴ Massimiliano Lattanzi,⁷ Marilena Loverde,³⁰ Sujata Pandey,³¹ Ninetta Saviano,^{17,32} Manibrata Sen,³³ Ian M. Shoemaker,²⁵ Walter Tangarife,³⁴ Yongchao Zhang,³⁵ Yue Zhang³⁶

Issue of Gauge Invariance

Neutrinophilic scalar interaction can arise from a dimension-6 operator. Higgs VEV projects out neutrinos from doublet.

$$\lambda \nu^2 \phi \leftarrow \frac{(LH)^2 \phi}{\Lambda^2}$$

Good enough for exploring low-energy, tree-level processes well below the EW scale.

But issue of gauge invariance would strike again at loop level.

Of phenomenological relevance for $\lambda \sim \mathcal{O}(1)$.

Radiative Correction to EW Couplings

At one loop level, $Z\nu\bar{\nu}$, $W\ell\nu$ couplings are UV divergent.

Unlike regular Yukawa, ϕ interaction turns neutrino into antineutrino — extra minus sign from $Zv^c \bar{v}^c$ vertex.

Radiative Correction to EW Couplings

At one loop level, $Z\nu\bar{\nu}$, $W\ell\nu$ couplings are UV divergent.

Unlike regular Yukawa, ϕ interaction turns neutrino into antineutrino — extra minus sign from $Zv^c \bar{v}^c$ vertex.

But finiteness implied by Ward identity!

Gauge Invariant UV Completion

Concrete example, introduce SU(2) triplet scalar T, hyper charge 2

Additional loop diagram from $T-\phi$ mixing that saves the day to render UV divergence cancellation.

Generic Form of Couplings

If ϕ is the only BSM state below EW scale, one-loop form factor is completely fixed by Ward identity and decoupling theorem.

$$g_{Z}(q^{2}, m_{\phi}^{2}, M^{2}) = g_{Z}^{0} - \frac{g_{Z}^{0}|\lambda|^{2}}{32\pi^{2}} \left\{ \ln \frac{M^{2}}{m_{\phi}^{2}} + 2 \int dx dy \left[\ln \left(\frac{M^{2}}{(1 - x - y)m_{\phi}^{2} - xyq^{2}} \right) + \frac{xyq^{2}}{(1 - x - y)m_{\phi}^{2} - xyq^{2}} \right] \right\}$$

$$g_{W}(m_{\phi}^{2}, M^{2}) = g_{W}^{0} - \frac{g_{W}^{0}|\lambda|^{2}}{64\pi^{2}} \left(\ln \frac{M^{2}}{m_{\phi}^{2}} + c_{W} \right) + \mathcal{O}\left(\frac{1}{M} \right)$$

 $c_Z = -3/2$, $c_W = 0$ for the triplet extention, M is triplet mass.

Neutral Current: Q Dependence

Q dependence thanks to separation of scales between M and m_{ϕ}

Connection to NuTeV "Anomaly"

NuTeV saw a deficit in neutral to charged-current event ratio

$$R \sim g_Z^2(Q^2) \left[1 - 2\sin^2 \theta_W(Q) \right]$$

Break the Degeneracy

CEvNS:

$$\sigma_{\nu N} \sim g_Z^2(Q^2) \sin^4 \theta_W(Q)$$

Neutrino/antineutrino-electron scattering:

$$\begin{split} \sigma_{\nu_{\mu}e} &\sim g_Z^2(Q^2) \left[3 - 12 \sin^2 \theta_W(Q) + 16 \sin^4 \theta_W(Q) \right] \\ \sigma_{\bar{\nu}_{\mu}e} &\sim g_Z^2(Q^2) \left[1 - 4 \sin^2 \theta_W(Q) + 16 \sin^4 \theta_W(Q) \right] \end{split}$$

It is possible to disentangle the Q dependences in $Z\nu\bar{\nu}$ coupling and the weak mixing angle.

vSI versus Solar Neutrino Flux

BOREXINO Collaboration, 2020 Measured ⁷Be neutrino flux: $(4.99 \pm 0.11^{+0.06}_{-0.08}) \times 10^9$ Standard solar model prediction: $4.93 \times (1 \pm 6\%) \times 10^9$

Percent level measurement of flux is sensitive to $vv\phi$ coupling in the range 0.1-1, & apply to all flavours.

S. Foroughi-Abari, YZ, in progress

Conclusion

Neutrino self-interaction much stronger than in the SM is well motivated: cosmo data, origin of dark matter abundance.

Not so elusive in the presence of a neutrinophilic mediator below the electroweak scale.

Rich opportunities for testing such a hypothesis with upcoming cosmological and terrestrial experiments.

Thanks!