Exploring chirality structure in nucleon decay

- Hiroki Takahashi (2nd year in PhD)
 - with
- Koichi Hamaguchi (UTokyo), Shihwen Hor (TDLI), Natsumi Nagata (UTokyo)
 - JHEP 01 (2025) 175
 - The Frontier of Particle Physics 2025@YITP

Decay channel: $p \rightarrow \pi^0 e^+$ and $p \rightarrow \eta e^+$

$\mathcal{L}_{\text{eff}} = C_{RL}^{\ell} \left[\epsilon_{abc} (u_R^a d_R^b) (u_L^c \ell_L) \right] + C_{LR}^{\ell} \left[\epsilon_{abc} (u_L^a d_L^b) (u_R^c \ell_R) \right] + C_{LL}^{\ell} \left[\epsilon_{abc} (u_L^a d_L^b) (u_L^c \ell_L) \right] + C_{RR}^{\ell} \left[\epsilon_{abc} (u_R^a d_R^b) (u_R^c \ell_R) \right]$

Take-home: Nucleon decay → Chirality structure

Decay channel: $p \rightarrow \pi^0 e^+$ and $p \rightarrow \eta e^+$

$$\mathcal{L}_{\text{eff}} = C_{RL}^{\ell} \left[\epsilon_{abc} (u_R^a d_R^b) (u_L^c \ell_L) \right] + C_{LR}^{\ell} \left[\epsilon_{abc} (u_L^a d_L^b) (u_L^c \ell_L) \right]$$

$u_R^c \ell_R) \Big] + C_{LL}^\ell \Big[\epsilon_{abc} (u_L^a d_L^b) (u_L^c \ell_L) \Big] + C_{RR}^\ell \Big[\epsilon_{abc} (u_R^a d_R^b) (u_R^c \ell_R) \Big]$

Take-home: Nucleon decay → Chirality structure

Decay channel: $p \rightarrow \pi^0 e^+$ and $p \rightarrow \eta e^+$

$$\mathcal{L}_{\text{eff}} = C_{RL}^{\ell} \left[\epsilon_{abc} (u_R^a d_R^b) (u_L^c \ell_L) \right] + C_{LR}^{\ell} \left[\epsilon_{abc} (u_L^a d_L^b) (u_L^c \ell_L) \right]$$

Plan:

- Introduction
- EFT discussion
- Application to SUSY GUTs

Baryon number violation

Baryon number is expected to be violated in physics beyond the standard model.

• Baryon asymmetry of the universe

Sakharov's three conditions $\rightarrow B$ violation A. D. Sakharov (1966)

Baryon number violation

Baryon number is expected to be violated in physics beyond the standard model (SM).

- Baryon asymmetry of the universe Sakharov's three conditions $\rightarrow B$ violation
- Gauge coupling unification: $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \rightarrow SU(5)$

nicely incorporated in Grand Unified Theory (GUT)

- Quark-lepton unification

$$\mathbf{10}_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & u_{Ri3}^{\dagger} & -u_{Ri2}^{\dagger} & u_{Li}^{1} & d_{Li}^{1} \\ -u_{Ri3}^{\dagger} & 0 & u_{Ri1}^{\dagger} & u_{Li}^{2} & d_{Li}^{2} \\ u_{Ri2}^{\dagger} & -u_{Ri1}^{\dagger} & 0 & u_{Li}^{3} & d_{Li}^{3} \\ -u_{Li}^{1} & -u_{Li}^{2} & -u_{Li}^{3} & 0 & e_{Ri}^{\dagger} \\ -d_{Li}^{1} & -d_{Li}^{2} & -d_{Li}^{3} & -e_{Ri}^{\dagger} & 0 \end{pmatrix}$$

- B violation

A. D. Sakharov (1966)

Nucleon decay

Nucleon decay has been the main probe of baryon-number violation.

e.g. $\tau(p \to \pi^0 e^+) > 2.4 \times 10^{34}$ years

⁴ years Super-Kamiokande Collaboration (2020)

Nucleon decay

Nucleon decay has been the main probe of baryon-number violation.

e.g.
$$\tau(p \to \pi^0 e^+) > 2.4 \times 10^3$$

Next-generation nucleon decay experiments:

• Hyper-Kamiokande (HK)

• JUNO

• DUNE

DEEP UNDERGROUND NEUTRINO EXPERIMENT

^{,4} years Super-Kamiokande Collaboration (2020)

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

 $(3)_C \otimes SU(2)_L \otimes U(1)_Y$

$$\mathcal{L}_{\mathrm{SM,eff}} = \sum_{I,ijkl} C_{(I)}^{ijkl} \mathcal{O}_{ijkl}^{(I)} + \text{h.c.} \qquad (SU(3))$$

$$\mathcal{O}_{ijkl}^{(1)} = \epsilon_{abc} \epsilon^{\alpha\beta} (u_{Ri}^{a} d_{Rj}^{b}) (Q_{Lk\alpha}^{c} L_{Ll\beta})$$

$$\mathcal{O}_{ijkl}^{(2)} = \epsilon_{abc} \epsilon^{\alpha\beta} (Q_{Li\alpha}^{a} Q_{Lj\beta}^{b}) (u_{Rk}^{c} e_{Rl})$$
Mixed

$$\mathcal{O}_{ijkl}^{(3)} = \epsilon_{abc} \epsilon^{\alpha\beta} \epsilon^{\gamma\delta} (Q_{Li\alpha}^a Q_{Lj\gamma}^b) (Q_{Lk\delta}^c L_{Ll\beta})$$
$$\mathcal{O}_{ijkl}^{(4)} = \epsilon_{abc} (u_{Ri}^a d_{Rj}^b) (u_{Rk}^c e_{Rl})$$

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

 $)_C \otimes SU(2)_L \otimes U(1)_Y$

d-type

$$\begin{aligned} \mathcal{L}_{\mathrm{SM,eff}} &= \sum_{I,ijkl} C_{(I)}^{ijkl} \mathcal{O}_{ijkl}^{(I)} + \mathrm{h.c.} & \text{SU(3)}_{C} \\ \mathcal{O}_{ijkl}^{(1)} &= \epsilon_{abc} \epsilon^{\alpha\beta} (u_{Ri}^{a} d_{Rj}^{b}) (Q_{Lk\alpha}^{c} L_{Ll\beta}) \\ \mathcal{O}_{ijkl}^{(2)} &= \epsilon_{abc} \epsilon^{\alpha\beta} (Q_{Li\alpha}^{a} Q_{Lj\beta}^{b}) (u_{Rk}^{c} e_{Rl}) \end{aligned} \quad \text{Mixed-} \\ \mathcal{O}_{ijkl}^{(3)} &= \epsilon_{abc} \epsilon^{\alpha\beta} \epsilon^{\gamma\delta} (Q_{Li\alpha}^{a} Q_{Lj\gamma}^{b}) (Q_{Lk\delta}^{c} L_{Ll\beta}) \\ \mathcal{O}_{ijkl}^{(4)} &= \epsilon_{abc} (u_{Ri}^{a} d_{Rj}^{b}) (u_{Rk}^{c} e_{Rl}) \end{aligned} \quad \text{Pure-t}$$

 \otimes SU(2)_L \otimes U(1)_Y

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

-type

type

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

S. Weinberg (1979) F. Wilczek and A. Zee (1979) L. F. Abbott and M. B. Wise (1980)

H. Georgi and S. L. Glashow (1974) Gauge boson exchange

Dominant in non-SUSY GUTs

Dimension-six Kähler

Mixed-type

 $C^{ijkl}_{(2)}$

 C^{ijkl}

(1)

H. Georgi and S. L. Glashow (1974) Gauge boson exchange

Dominant in non-SUSY GUTs

Dimension-six Kähler

Mixed-type

 $C_{(2)}^{ijkl}$

 C^{ijkl}

S. Weinberg (1982) Color-triplet Higgs exchange N. Sakai and T. Yanagida (1982)

H. Georgi and S. L. Glashow (1974) Gauge boson exchange

Chirality structure is sensitive to UV physics.

S. Weinberg (1982) Color-triplet Higgs exchange N. Sakai and T. Yanagida (1982)

Chirality structure

Mixed-type Pure-type

UV physics

4 - - - - - **>**

Mediator, mass spectrum

Chirality structure

Mixed-type Pure-type

Q. How to probe chirality structure?

UV physics

• - - - - - • •

Mediator, mass spectrum

Chirality structure

Mixed-type

Pure-type

Q. How to probe chirality structure?

A. By means of ratios of branching fractions

UV physics

Mediator, mass spectrum

Solution Case 1: mixed-type only case, $C_{LL}^{\ell} = C_R^{\ell}$ $\Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_{\Pi}^2}{m_N^2}\right)^2 |W_{N\Pi\ell,0}^{LR}|^2$

$$T_{RR}^{\ell} = 0$$
, with $m_{\ell} = 0$.

$$|^{2}\left[|C_{RL}^{\ell}|^{2}+|C_{LR}^{\ell}|^{2}
ight]$$

$$T_{RR}^{\ell} = 0$$
, with $m_{\ell} = 0$.

$$|^{2}\left[|C_{RL}^{\ell}|^{2}+|C_{LR}^{\ell}|^{2}
ight]$$

Solution Case 1: mixed-type only case,
$$C_{LL}^{\ell} = C_{RR}^{\ell} = 0$$
, with $m_{\ell} = 0$.
 $\Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_N^2}\right)^2 \frac{|W_{N\Pi\ell,0}^{LR}|^2}{|W_{N\Pi\ell,0}^{LR}|^2} \left[|C_{RL}^{\ell}|^2 + |C_{LR}^{\ell}|^2\right]$

Hadron matrix elements

$$\langle \Pi(\boldsymbol{p}) | \mathcal{O}_{\chi\chi'} | N(\boldsymbol{k}) \rangle = P_{\chi'} \left[\frac{W_0^{\mathcal{O}}(q^2) + \frac{\not q}{m_N} W_1^{\mathcal{O}}(q^2) \right] u_N(\boldsymbol{k}) \qquad \mathcal{O}_{\chi\chi'} = \epsilon_{abc} (q_\chi^a q_\chi'^b) q_{\chi'}'^c$$

$$q^\mu = k^\mu - p^\mu$$

Case 1: mixed-type only case, $C_{LL}^{\ell} = C_{R}^{\ell}$ $\Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_N^2} \right)^2 |W_{N\Pi\ell,0}^{LR}|^2$

Hadron matrix elements

$$\langle \Pi(\boldsymbol{p}) | \mathcal{O}_{\boldsymbol{\chi}\boldsymbol{\chi}'} | N(\boldsymbol{k}) \rangle = P_{\boldsymbol{\chi}'} \left[\frac{W_0^{\mathcal{O}}(q^2)}{m_N} + \frac{\not q}{m_N} W_1^{\mathcal{O}}(q^2) \right] u_N(\boldsymbol{k}) \qquad \mathcal{O}_{\boldsymbol{\chi}\boldsymbol{\chi}'} = \epsilon_{abc} (q_{\boldsymbol{\chi}}^a q_{\boldsymbol{\chi}}'^b) q_{\boldsymbol{\chi}'}''^c$$

We use the form factors obtained by <u>lattice simulations</u>

$$f_{RR}^{\ell} = 0$$
, with $m_{\ell} = 0$.

$${}^{2}\left[|C_{RL}^{\ell}|^{2}+|C_{LR}^{\ell}|^{2}\right]$$

Y. Aoki et al. (2017) J. S. Yoo, et al. (2022)

Uncertainty: $\mathcal{O}(10)$ %

Case 1: mixed-type only case, $C_{LL}^{\ell} = C_{R}^{\ell}$ $\Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_M^2} \right)^2 |W_{N\Pi\ell,0}^{LR}|^2$

- Wilson coefficients which reflect UV physics.

$$m_{RR}^{\ell}=0$$
, with $m_{\ell}^{\prime}=0$.

$${}^{2}\left[|C_{RL}^{\ell}|^{2} + |C_{LR}^{\ell}|^{2}\right]$$

• Does not depend on whether $p \to \pi^0 e^+$ or $p \to \eta e^+$

Case 1: mixed-type only case, $C_{LL}^{\ell} = C_{LL}^{\ell}$ $\Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_N^2} \right)^2 |W_{N\Pi\ell,0}^{LR}|^2 \left[|C_{RL}^{\ell}|^2 + |C_{LR}^{\ell}|^2 \right]$ The ratio $\Gamma(p \to \eta e^+)/\Gamma(p \to \pi^0 e^+)$ are solely determined by low-energy quantities. $\frac{\Gamma(p \to \eta e^+)}{\Gamma(p \to \pi^0 e^+)} = \frac{(1 - m_\eta^2 / m_p^2)^2}{(1 - m_\pi^2 / m_p^2)^2} \cdot \frac{|W_{p\eta\ell}^{\chi\chi'}|^2}{|W_{n\pi^0\ell}^{\chi\chi'}|^2}$

$$m_{RR}^{\ell} = 0$$
, with $m_{\ell} = 0$.

$$\simeq \begin{cases} 0.0013 & (Mixed only) \\ 0.51 & (Pure only) \end{cases}$$

$$\begin{array}{l} \textcircledlength{\textcircled[]{\label{eq:Case 1: mixed-type only case, } C_{LL}^{\ell} = C_{RR}^{\ell} = 0, \mbox{ with } m_{\ell} = 0. \\ & \Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_N^2} \right)^2 |W_{N\Pi\ell,0}^{LR}|^2 \left[|C_{RL}^{\ell}|^2 + |C_{LR}^{\ell}|^2 \right] \\ \textcircledlength{\textcircled[]{\label{eq:Case 1: mixed-type only case, } C_{IL}^{\ell} = \pi_N^0 e^+ \end{tabular}} \\ & \Gamma(N \to \Pi \ell^+) = \frac{m_N}{32\pi} \left(1 - \frac{m_\Pi^2}{m_N^2} \right)^2 \cdot \frac{|W_{N\Pi\ell,0}^{LR'}|^2}{|W_{p\eta\ell}^{\chi\chi'}|^2} \simeq \begin{cases} 0.0013 & (\text{Mixed only}) \\ 0.51 & (\text{Pure only}) \end{cases} \\ & \bullet \text{ Parity invariance of QCD plays the role:} \end{cases} \\ & \overline{W_{N\Pi\ell,I}^{RL} = W_{N\Pi\ell,I}^{LR}}, \qquad W_{N\Pi\ell,I}^{LL} = W_{N\Pi\ell,I}^{RR} \end{cases} \quad \langle \Pi(p) | \mathcal{O}_{\chi\chi'} | N(k) \rangle = I \end{cases} \end{array}$$

- low-energy quantities.

$$\left\langle \Pi(\boldsymbol{p}) | \mathcal{O}_{\boldsymbol{\chi}\boldsymbol{\chi}'} | N(\boldsymbol{k}) \right\rangle = P_{\boldsymbol{\chi}'} \left[W_0^{\mathcal{O}}(q^2) + \frac{\not q}{m_N} W_1^{\mathcal{O}}(q^2) \right] u_N(\boldsymbol{k})$$

UV physics

Mediator, mass spectrum

The ratios of branching fractions

Chirality structure

Mixed-type

Pure-type

H. Georgi and S. L. Glashow (1974) Gauge boson exchange

S. Weinberg (1982) Color-triplet Higgs exchange N. Sakai and T. Yanagida (1982)

Dominant in **SUSY GUTs**

Dimension-five superpotential

 $M_{H_C} M_{\rm SUSY}^2$

• $M_{\rm SUSY}$: sfermion mass • $m_{\tilde{g}} \leq M_{\mathrm{SUSY}}$

The minimal SU(5) with high-scale SUSY No sfermion flavor violation

 $\Gamma(p \to \eta \mu^+)/\Gamma(p \to \pi^0 \mu^+)$: wino-exchange contributes (pure-type) as M_{H_c} decreases.

- $M_X = 10^{16} \, \mathrm{GeV}$ $M_2 = 1 \, \mathrm{TeV}$
- $M_3 = 10 \, {\rm TeV}$
- $M_{\rm SUSY} = 100 \,{\rm TeV}$
- $\tan \beta = 3$

Mini-split type mass spectrum

L. J. Hall, Y. Nomura and S. Shirai (2012) M. Ibe, S. Matsumoto and T. T. Yanagida (2012)

- $--- \Gamma(p \rightarrow \eta \mu^{+}) / \Gamma(p \rightarrow \pi^{0} \mu^{+})$
 - $\cdots \Gamma(n \to \eta \bar{\nu}) / \Gamma(n \to \pi^0 \bar{\nu})$
 - $- \Gamma(n \rightarrow \pi^0 \bar{\nu}) / \Gamma(p \rightarrow \pi^0 e^+)$
 - $\Gamma(n \rightarrow \pi^0 \bar{\nu}) / \Gamma(p \rightarrow \pi^0 \mu^+)$

No sfermion flavor violation

No sfermion flavor violation

No sfermion flavor violation

The ratios of nucleon decay branching fractions are sensitive to UV physics.

SUSY dimension-five nucleon decay operators

The dimension-five contribution is proportional to $m_{\tilde{g}}/(M_{H_C}M_{SUSY}^2)$

P. Nath and R. L. Arnowitt (1988) J Hisano, H. Murayama and T. Yanagida (1993)

Current bounds and future prospects

Decay Mode	Current [years]	HK sensitivity
$p \to \pi^0 e^+$	2.4×10^{34} [25]	$7.8 imes 10^{34}$ [11]
$p \to \pi^0 \mu^+$	1.6×10^{34} [25]	$7.7 imes 10^{34} \ [11]$
$p ightarrow \eta e^+$	1.0×10^{34} [26]	$4.3 imes 10^{34} \ [11]$
$p ightarrow \eta \mu^+$	4.7×10^{33} [26]	$4.9 imes 10^{34} \ [11]$
$p \to \pi^+ \bar{\nu}$	$3.9 imes 10^{32}$ [27]	
$n ightarrow \pi^- e^+$	5.3×10^{33} [26]	$2.0 imes 10^{34} [11]$
$n ightarrow \pi^- \mu^+$	3.5×10^{33} [26]	$1.8 imes 10^{34} \ [11]$
$n ightarrow \pi^0 \bar{ u}$	1.1×10^{33} [27]	
$n ightarrow \eta ar{ u}$	1.6×10^{32} [28]	

[11]: Hyper-Kamiokande Collaboration [arXiv: 1805.04163] [25]: Super-Kamiokande Collaboration [arXiv: 2010.16098] [26]: Super-Kamiokande Collaboration [arXiv: 1705.07221] [27]: Super-Kamiokande Collaboration [arXiv: 1305.4391] [28]: C. McGrew et al. (1999)

- [years]
- Units: 10^{33} years
- ▶ 90% CL
- 1.9 Megaton-year exposure is assumed for the prospect.

Event Reconstruction

Eta mass reconstruction at SK

- Left: $\eta \rightarrow 2\gamma$, branching ratio = 39%
- Right: $\eta \rightarrow 3\pi^0$, branching ratio = 33%
- Open histogram: Monte-Carlo events
- Hatched histogram:
 - left: true $\eta \rightarrow 2\gamma$
 - right: true $\eta \rightarrow 3\pi^0$

- Assume the tree-level exchange of a scalar or vector boson -
 - Vector boson V_{μ} can induce $\mathcal{O}_{ijk\ell}^{(1)}$, $\mathcal{O}_{ijk\ell}^{(2)}$ Renormalizable interaction: $V_{\mu}\psi_{R\dot{\alpha}}\bar{\sigma}^{\mu\dot{\alpha}\alpha}\chi_{L\alpha}$ ψ_{R} include the conjugate of ψ_{L} Scalar boson *S* can induce $\mathcal{O}_{ijk\ell}^{(1)}$, $\mathcal{O}_{ijk\ell}^{(2)}$, $\mathcal{O}_{ijk\ell}^{(3)}$, $\mathcal{O}_{ijk\ell}^{(4)}$. Renormalizable interactions: $S(\psi_L \chi_L)$, $S(\psi_R \chi_R)$
- In non-SUSY GUTs, the gauge boson exchange typically dominates: mixed-type
- In SUSY-GUT, the one-loop contribution can be significant: both can contribute

S. Weinberg (1979)

D. V. Nanopoulos and S. Weinberg (1979)

$$\mathcal{O}_{ijk\ell}^{(1)} \equiv \epsilon_{abc} \epsilon_{\alpha\beta} \left(u_{Ri}^{a} d_{Rj}^{b} \right) \left(Q_{k}^{c\alpha} L_{\ell}^{\beta} \right) \\\mathcal{O}_{ijk\ell}^{(2)} \equiv \epsilon_{abc} \epsilon_{\alpha\beta} \left(Q_{i}^{a\alpha} Q_{j}^{b\beta} \right) \left(u_{Rk}^{c} e_{R} \right) \\\mathcal{O}_{ijk\ell}^{(3)} \equiv \epsilon_{abc} \epsilon_{\alpha\beta} \epsilon_{\gamma\delta} \left(Q_{i}^{a\alpha} Q_{j}^{b\gamma} \right) \left(Q_{k}^{c\delta} \right) \\\mathcal{O}_{ijk\ell}^{(4)} \equiv \epsilon_{abc} \left(u_{Ri}^{a} d_{Rj}^{b} \right) \left(u_{Rk}^{c} e_{R\ell} \right),$$

The direct method

We use hadron matrix elements evaluated by lattice simulations.

$$\langle \Pi(\boldsymbol{p}) | \mathcal{O}_{\chi\chi'} | N(\boldsymbol{k}) \rangle = P_{\chi'} \left[W_0^{\mathcal{O}}(q^2) + \frac{\not q}{m_N} W_1^{\mathcal{O}}(q^2) \right] u_N(\boldsymbol{k}) \qquad \mathcal{O}_{\chi\chi'} = \epsilon_{abc} (q_\chi^a q_\chi'^b) q_{\chi'}'^{\prime c}$$

Y. Aoki et al. (2017) J. S. Yoo, et al. (2022)

	1		
_	LR	LL	
51	0.169	-0.134	
13	0.044	-0.044	

•
$$W^{RR} = W^{LL}, W^{RL} = W^{LL}$$

• In units of GeV^2

• $\mathcal{O}(m_{\ell}/m_p) \rightarrow \text{only relevant for anti-muon}$

Positron channels: $\Gamma(p \rightarrow \eta e^+)/\Gamma(p \rightarrow \pi^0 e^+)$

To understand the behavior, let us use the expressions calculated from chiral lagrangian (i.e., the so-called indirect method

$$\begin{split} \Gamma(p \to \pi^0 e^+) &= \frac{m_p}{32\pi} \left(1 - \frac{m_\pi^2}{m_p^2} \right)^2 \frac{(1+D+F)^2 \alpha^2}{2f^2} \left[|C_{RL}^e - C_{LL}^e|^2 + |C_{LR}^e - C_{RR}^e|^2 \right] \\ \Gamma(p \to \eta e^+) &= \frac{m_p}{32\pi} \left(1 - \frac{m_\eta^2}{m_p^2} \right)^2 \frac{\alpha^2}{6f^2} \left[|(1+D-3F)C_{RL}^e + (3-D+3F)C_{LL}^e|^2 + |(1+D-3F)C_{LR}^e + (3-D+3F)C_{RR}^e|^2 \right] \\ &+ \left| (1+D-3F)C_{LR}^e + (3-D+3F)C_{RR}^e \right|^2 \right], \end{split}$$

- $p \rightarrow \pi^{\vee} e'$ is suppressed when $C_{LL}^e / C_{RL}^e = C_{RR}^e / C_{LR}^e = 1$

M. Claudson, M. B. Wise, and L. J. Hall (1982)

• $p \to \eta e^+$ is suppressed when $C_{II}^e / C_{RI}^e = C_{RR}^e / C_{IR}^e = -(1 + D - 3F) / (3 - D + 3F) \simeq -0.1$

Anti-muon channels: $\Gamma(p \rightarrow \eta \mu^+)/\Gamma(p \rightarrow \pi^0 \mu^+)$

Solution For the mixed-only case, up to $\mathcal{O}(m_{\mu}/m_{p})$, $\Gamma(p \to \Pi \mu^+) = \frac{m_p}{32\pi} \left(1 - \frac{m_\Pi^2}{m_p^2} \right)^2 \left(W_{p\Pi\ell,0}^{LR} \right)^2 \left[|C_{RL}^{\mu}|^2 + |C_{LR}^{\mu}|^2 \right] ,$ $\times \left[1 + \frac{4m_{\mu}}{m_{p}} \left\{ \frac{W_{p\Pi\ell,1}^{LR}}{W_{n\Pi\ell,0}^{LR}} + \left(1 - \frac{m_{\Pi}^{2}}{m_{n}^{2}}\right)^{-1} \right\} \frac{\operatorname{Re}(C_{RL}^{\mu}C_{LR}^{\mu*})}{|C_{RL}^{\mu}|^{2} + |C_{LR}^{\mu}|^{2}} \right]$

- The source of the dependence on $|C_{LR}^e/C_{RL}^e|$ • This effect is enhanced when $|W_{p\Pi\mu,1}^{LR}| \gg |W_{p\Pi\mu,0}^{LR}|$

Form factors obtained by lattice QCD in units of GeV^2

	1	
LL	LR	LL
151	0.169	-0.134
.113	0.044	-0.044

Y. Aoki et al. (2017) J. S. Yoo, et al. (2022)

Other channels

or pure-only cases.

- same applies to $\Gamma(n \to \pi^0 \bar{\nu}) / \Gamma(p \to \pi^0 \ell^+)$.
- models.

The ratio of neutrino channels is related to that of charged leptons in either mixed-

Due to the presence of more Wilson coefficients (=six for the neutrino ratio), it is difficult to extract information about the Wilson coefficients on generic grounds. The

Those ratios can still become powerful probes when considering specific UV

High-scale SUSY

M. Ibe, S. Matsumoto, T. T. Yanagida (2012) e and an eta

For $M_{\rm SUSY} = 10^2$ TeV, tan $\beta \sim 3$ is needed to reproduce the correct Higgs mass.

 $\Gamma(p \rightarrow \eta e^+)/\Gamma(p \rightarrow \pi^0 e^+)$: gauge-boson exchange (mixed-type) dominates even when the GUT gauge boson is heavy.

•
$$M_X = 10^{17} \text{ GeV}$$

• $M_{H_C} = 10^{16} \text{ GeV}$
• $M_2 = 1 \text{ TeV}$
• $M_3 = 10 \text{ TeV}$
• $M_{SUSY} = 100 \text{ TeV}$
• $\tan \beta = 3$

 $\Gamma(p \rightarrow \eta \mu^+)/\Gamma(p \rightarrow \pi^0 \mu^+)$: wino contribution (mixed-type) dominates regardless of the higgsino mass.

 \rightarrow this ratio is sensitive to dim-5 wino v.s. the GUT gauge boson competition.

 $\Gamma(n \to \eta \bar{\nu})/\Gamma(n \to \pi^0 \bar{\nu})$: higgsino contribution (mixed-type) becomes larger as its mass increases.

 \rightarrow this ratio is most useful to discriminate the higgsino contribution from that of wino.

• $M_X = 10^{16}$ GeV, $M_2 = 1$ TeV, $M_3 = 10$ TeV, $M_{SUSY} = 100$ TeV, $\tan \beta = 3$

• $M_X = 10^{17} \text{ GeV}, \ M_{H_C} = 10^{16} \text{ GeV}, \ M_2 = 1 \text{ TeV}, \ M_3 = 10 \text{ TeV}, \ M_{SUSY} = 100 \text{ TeV}, \ \tan \beta = 3$

Sfermion flavor violation

 $M_X = 10^{17} \text{ GeV}, M_{H_C} = 10^{16} \text{ GeV}, \mu_H = 200 \text{ GeV},$ $M_1 = 5$ TeV, $M_2 = 1$ TeV, $M_3 = 10$ TeV, $M_{SUSY} = 100$ TeV, $\tan \beta = 3$

In the presence of flavor violation,

- various channels could be accessible by upcoming experiments, or
- even ruled out by current experimental limits for large $\delta_{13}^{\tilde{f}}$

 \rightarrow can readily be avoided if M_{SUSY} or M_{H_C} is larger

$$\widetilde{m}_{\tilde{f}}^2 = M_{\rm SUSY}^2 \begin{pmatrix} 1 & \delta_{12}^{\tilde{f}} & \delta_{13}^{\tilde{f}} \\ \delta_{12}^{\tilde{f}*} & 1 & \delta_{23}^{\tilde{f}} \\ \delta_{13}^{\tilde{f}*} & \delta_{23}^{\tilde{f}*} & 1 \end{pmatrix}$$

Sfermion flavor violation

 $M_X = 10^{17} \text{ GeV}, M_{H_C} = 10^{16} \text{ GeV}, \mu_H = 200 \text{ GeV},$ $M_1 = 5$ TeV, $M_2 = 1$ TeV, $M_3 = 10$ TeV, $M_{SUSY} = 100$ TeV, $\tan \beta = 3$

In the presence of flavor violation,

- various channels could be accessible by upcoming experiments, or
- even ruled out by current experimental limits for large $\delta_{13}^{\tilde{f}}$

 \rightarrow can readily be avoided if M_{SUSY} or M_{H_C} is larger

$$\widetilde{m}_{\tilde{f}}^2 = M_{\rm SUSY}^2 \begin{pmatrix} 1 & \delta_{12}^{\tilde{f}} & \delta_{13}^{\tilde{f}} \\ \delta_{12}^{\tilde{f}*} & 1 & \delta_{23}^{\tilde{f}} \\ \delta_{13}^{\tilde{f}*} & \delta_{23}^{\tilde{f}*} & 1 \end{pmatrix}$$

Uncertainties in hadron matrix elements

- As we have seen in Aoki san's talk, the uncertainties in the nucleon decay matrix elements obtained by the lattice QCD calculation are currently $\sim 10 \,\%$.
- At leading order in the chiral perturbation,

$$\begin{split} W_{p\pi^{+}\nu,0}^{LR} &= \frac{1+D+F}{f} \alpha , \qquad W_{p\pi^{+}\nu,1}^{LR} = -\frac{2(D+F)}{f} \alpha , \\ W_{p\pi^{+}\nu,0}^{LL} &= \frac{1+D+F}{f} \beta , \qquad W_{p\pi^{+}\nu,1}^{LL} = -\frac{2(D+F)}{f} \beta , \\ W_{p\pi^{\ell},0}^{LR} &= -\frac{1+D-3F}{\sqrt{6}f} \alpha , \qquad W_{p\pi^{\ell},1}^{LR} = \frac{2(D-3F)}{\sqrt{6}f} \alpha , \\ W_{p\eta^{\ell},0}^{LL} &= \frac{3-D+3F}{\sqrt{6}f} \beta , \qquad W_{p\eta^{\ell},1}^{LL} = \frac{2(D-3F)}{\sqrt{6}f} \beta , \\ \langle 0|\epsilon_{abc}(u_{R}^{a}d_{R}^{b})u_{L}^{c}|p\rangle \equiv \alpha P_{L}u_{p} , \\ \langle 0|\epsilon_{abc}(u_{L}^{a}d_{L}^{b})u_{L}^{c}|p\rangle \equiv \beta P_{L}u_{p} , \end{split}$$

We expect the uncertainties to be significantly reduced if, instead of the matrix elements themselves, the ratios of them are estimated directly by the calculation. This is because each matrix element is not independent, but correlated with each other.

 $\alpha = -0.01257(111) \text{ GeV}^3$, $\beta = 0.01269(107) \text{ GeV}^3$. $\alpha \simeq -\beta$ to ~ 1 %

If we take their ratios, f, α, β will cancel out.

Comments on $W^{\chi\chi'}$

the following combination is evaluated in Y. Aoki et al. (2017). $W^{\chi\chi'}_{p\eta\ell,\mu} \equiv W^{\chi\chi'}_{p\eta\ell,0} + \frac{m_{\mu}}{m_{N}} W^{\chi\chi'}_{p\eta\ell,1}$ We extract $W_{pn\ell,1}^{\chi\chi'}(0)$ from $W_{pn\ell,\mu}^{\chi\chi'}(m_{\mu}^2)$ by using $W_{pn\ell,0}^{\chi\chi'}(0)$, neglecting m_{μ}^2 dependence.

- In previous lattice simulations, the values of $W_{pn\ell,1}^{\chi\chi'}(0)$ were not estimated. However,