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• Introduction


• EFT discussion


• Application to SUSY GUTs 
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Baryon number violation
Baryon number is expected to be violated in physics beyond the standard model (SM).


• Baryon asymmetry of the universe


• Gauge coupling unification: SU(3) SU(2) U(1)   SU(5) C ⊗ L ⊗ Y →

H. Georgi and S. L. Glashow (1974)

Fig. from P. Langacker (1981)

Sakharov’s three conditions →  violationB A. D. Sakharov (1966)

- Quark-lepton unification


-  violationB

nicely incorporated in Grand Unified Theory (GUT)
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Nucleon decay
Nucleon decay has been the main probe of baryon-number violation.
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Nucleon decay
Nucleon decay has been the main probe of baryon-number violation.

Next-generation nucleon decay experiments:


• Hyper-Kamiokande (HK)


• JUNO


• DUNE

e.g.      yearsτ(p → π0e+) > 2.4 × 1034 Super-Kamiokande Collaboration (2020)
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Chirality structure is sensitive to UV physics.
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qμ = kμ − pμ



 Case 1: mixed-type only case, , with .Cℓ
LL = Cℓ

RR = 0 mℓ = 0

Chirality structure and branching fractions

Hadron matrix elements

Y. Aoki et al.  (2017)

J. S. Yoo, et al. (2022)We use the form factors obtained by lattice simulations

Uncertainty: 𝒪(10) %



 Case 1: mixed-type only case, , with .Cℓ
LL = Cℓ

RR = 0 mℓ = 0

Chirality structure and branching fractions

‣  Wilson coefficients which reflect UV physics.

‣  Does not depend on whether   or p → π0e+ p → ηe+
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 Case 1: mixed-type only case, , with .


 The ratio  are solely determined by low-energy quantities.

Cℓ
LL = Cℓ

RR = 0 mℓ = 0

Γ(p → ηe+)/Γ(p → π0e+)

Chirality structure and branching fractions

→ Parity invariance of QCD plays the role:
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 is sensitive to chirality structure.Γ(p → ηe+)/Γ(p → π0e+)
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MSUSY
mg̃ ≤ MSUSY
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N. Sakai and T. Yanagida (1982)



The minimal SU(5) with high-scale SUSY

•   GeV


•   TeV


•   TeV


•   TeV


•   

MX = 1016

M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

Mini-split type 
mass spectrum

L. J. Hall, Y. Nomura and S. Shirai (2012)

M. Ibe, S. Matsumoto and T. T. Yanagida (2012)

 : wino-exchange contributes (pure-type) as  decreases.Γ(p → ημ+)/Γ(p → π0μ+) MHC

No sfermion flavor violation



The minimal SU(5) with high-scale SUSY

•   GeV


•   TeV


•   TeV


•   TeV


•   

MX = 1016

M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

Mini-split type 
mass spectrum

L. J. Hall, Y. Nomura and S. Shirai (2012)

M. Ibe, S. Matsumoto and T. T. Yanagida (2012)

 : wino-exchange contributes (pure-type) as  decreases.Γ(p → ημ+)/Γ(p → π0μ+) MHC

No sfermion flavor violation



The minimal SU(5) with high-scale SUSY

•   GeV


•   TeV


•   TeV


•   TeV


•   

MX = 1016

M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

Mini-split type 
mass spectrum

L. J. Hall, Y. Nomura and S. Shirai (2012)

M. Ibe, S. Matsumoto and T. T. Yanagida (2012)

:

 Left: larger contribution of the wino-exchanging process (pure-type).

Γ(n → ην̄)/Γ(n → π0ν̄)

No sfermion flavor violation



The minimal SU(5) with high-scale SUSY

•   GeV


•   TeV


•   TeV


•   TeV


•   
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M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

Mini-split type 
mass spectrum

L. J. Hall, Y. Nomura and S. Shirai (2012)

M. Ibe, S. Matsumoto and T. T. Yanagida (2012)

:

 Left: larger contribution of the wino-exchanging process (pure-type).


 Right: higgsino exchange (mixed-type) dominates in smaller .

Γ(n → ην̄)/Γ(n → π0ν̄)

MHC

No sfermion flavor violation
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 The gluino exchange dominates as  increases, even in .


  is a useful probe of this scenario.

δũR
13 Γ(p → ηe+)/Γ(p → π0e+)

Γ(n → π0ν̄)/Γ(p → π0ℓ+)



Summary

Chirality structure UV physics

The ratios of branching fractions

Mediator, mass spectrum

The ratios of nucleon decay branching fractions 
are sensitive to UV physics.

Thank you for your attention!
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SUSY dimension-five nucleon decay operators 

 Higgsino/gaugino-dependence 
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Loop function: 
・ : higgsino or gaugino mass


・ : sfermion mass

mg̃

mi

When   M ≪ m1 ∼ m2

P. Nath and R. L. Arnowitt (1988)

J Hisano, H. Murayama and T. Yanagida (1993)

2

The dimension-five contribution is proportional to  mg̃/(MHC
M2

SUSY)



Current bounds and future prospects

 Units:  years


 90% CL


 1.9 Megaton-year exposure is assumed 
for the prospect.

1033

[11]: Hyper-Kamiokande Collaboration [arXiv: 1805.04163]

[25]: Super-Kamiokande Collaboration [arXiv: 2010.16098]

[26]: Super-Kamiokande Collaboration [arXiv: 1705.07221]

[27]: Super-Kamiokande Collaboration [arXiv: 1305.4391]

[28]: C. McGrew et al. (1999)



Event Reconstruction

  Eta mass reconstruction at SK   

・Left: , branching ratio = 39%


・Right: , branching ratio = 33%

・Open histogram: Monte-Carlo events

・Hatched histogram:


　- left: true   

　- right: true 

η → 2γ
η → 3π0

η → 2γ
η → 3π0

Super-Kamiokande Collaboration [arXiv: 1705.07221]



Effective interactions for nucleon decay

 Assume the tree-level exchange of a scalar or vector boson


‣ Vector boson  can induce ,   


‣ Scalar boson  can induce ,  , ,  .


 In non-SUSY GUTs, the gauge boson exchange typically dominates: mixed-type


 In SUSY-GUT, the one-loop contribution can be significant: both can contribute

Vμ 𝒪(1)
ijkℓ 𝒪(2)

ijkℓ

S 𝒪(1)
ijkℓ 𝒪(2)

ijkℓ 𝒪(3)
ijkℓ 𝒪(4)

ijkℓ

Renormalizable interaction:  VμψR ·ασ̄μ ·ααχLα

Renormalizable interactions:  ,  S(ψL χL) S(ψR χR)

S. Weinberg (1979)

D. V. Nanopoulos and S. Weinberg (1979) 

 include the conjugate of  ψR ψL



 We use hadron matrix elements evaluated by lattice simulations.

The direct method

• 


• In units of GeV

WRR = WLL, WRL = WLR

2

Y. Aoki et al.  (2017)

J. S. Yoo, et al. (2022)

•  → only relevant for anti-muon 𝒪(mℓ/mp)



Positron channels: Γ(p → ηe+)/Γ(p → π0e+)

•    is suppressed when 


•    is suppressed when 

p → π0e+ Ce
LL /Ce

RL = Ce
RR/Ce

LR = 1

p → ηe+ Ce
LL /Ce

RL = Ce
RR/Ce

LR = − (1 + D − 3F)/(3 − D + 3F) ≃ − 0.1

 To understand the behavior, let us use the expressions calculated from chiral 
lagrangian (i.e., the so-called indirect method                                                )M. Claudson, M. B. Wise, and L. J. Hall (1982) 



Mixed-only

Chirality structure and branching fractions

 Case 3: mixed- or pure-only case, but with nonzero .mμ



 can distinguish between different mixed/pure operators.Γ(p → ημ+)/Γ(p → π0μ+)

Mixed-only Pure-only

Chirality structure and branching fractions

 Case 3: mixed- or pure-only case, but with nonzero .mμ



Anti-muon channels: Γ(p → ημ+)/Γ(p → π0μ+)
 For the mixed-only case, up to 𝒪(mμ/mp),

•  The source of the dependence on 


•  This effect is enhanced when 

|Ce
LR/Ce

RL |

|WLR
pΠμ,1 | ≫ |WLR

pΠμ,0 |

Y. Aoki et al.  (2017)

J. S. Yoo, et al. (2022)Form factors obtained by lattice QCD in units of GeV  2



Other channels
 The ratio of neutrino channels is related to that of charged leptons in either mixed- 
or pure-only cases.


 Due to the presence of more Wilson coefficients (=six for the neutrino ratio), it is 
difficult to extract information about the Wilson coefficients on generic grounds. The 
same applies to .


 Those ratios can still become powerful probes when considering specific UV 
models.

Γ(n → π0ν̄)/Γ(p → π0ℓ+)



High-scale SUSY
 Relation between SUSY-breaking scale and  tan β

M. Ibe, S. Matsumoto, T. T. Yanagida (2012)

For  TeV, 


 is needed to reproduce 

the correct Higgs mass.

MSUSY = 102

tan β ∼ 3



The minimal SU(5) with high-scale SUSY
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 : wino-exchange contributes (pure-type) as  decreases.


  and  show the same tendency.

Γ(p → ημ+)/Γ(p → π0μ+) MHC

Γ(n → π0ν̄)/Γ(p → π0e+) Γ(n → π0ν̄)/Γ(p → π0μ+)
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: gauge-boson exchange (mixed-type) dominates even when 
the GUT gauge boson is heavy.
Γ(p → ηe+)/Γ(p → π0e+)



The minimal SU(5) with high-scale SUSY

•   GeV


•   GeV


•   TeV


•   TeV


•   TeV


•  

MX = 1017

MHC
= 1016

M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

: wino contribution (mixed-type) dominates regardless of the higgsino mass.


→ this ratio is sensitive to dim-5 wino v.s. the GUT gauge boson competition.

Γ(p → ημ+)/Γ(p → π0μ+)



The minimal SU(5) with high-scale SUSY

•   GeV
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•   TeV


•  

MX = 1017

MHC
= 1016

M2 = 1
M3 = 10
MSUSY = 100
tan β = 3

: higgsino contribution (mixed-type) becomes larger as its mass increases. 


→ this ratio is most useful to discriminate the higgsino contribution from that of wino.

Γ(n → ην̄)/Γ(n → π0ν̄)



Sfermion flavor violation and ratios

 The gluino exchange dominates as  increases, even in .


  is a useful probe of this scenario.

δQ̃L
13 Γ(p → ηe+)/Γ(p → π0e+)

Γ(n → π0ν̄)/Γ(p → π0μ+)

𝒪(3)
ijkl
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The minimal SU(5) with high-scale SUSY

•   GeV,   GeV,   TeV,   TeV,   TeV,    MX = 1017 MHC
= 1016 M2 = 1 M3 = 10 MSUSY = 100 tan β = 3



Sfermion flavor violation

In the presence of flavor violation, 


‣ various channels could be accessible 
by upcoming experiments, or


‣ even ruled out by current experimental 
limits for large δ f̃

13
→ can readily be avoided if  or  is largerMSUSY MHC
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MX = 1017 MHC
= 1016 μH = 200

M1 = 5 M2 = 1 M3 = 10 MSUSY = 100 tan β = 3
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  GeV,  GeV,  GeV, 


  TeV,  TeV,  TeV,  TeV,  

MX = 1017 MHC
= 1016 μH = 200

M1 = 5 M2 = 1 M3 = 10 MSUSY = 100 tan β = 3
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13
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Uncertainties in hadron matrix elements
 As we have seen in Aoki san’s talk, the uncertainties in the nucleon decay matrix 

elements obtained by the lattice QCD calculation are currently .


 We expect the uncertainties to be significantly reduced if, instead of the matrix 
elements themselves, the ratios of them are estimated directly by the calculation. 
This is because each matrix element is not independent, but correlated with each other.


 At leading order in the chiral perturbation, 

∼ 10 %

If we take their ratios,  
 will cancel out.f, α, β

 toα ≃ − β ∼ 1 %



Comments on Wχχ′￼

pηℓ,1
 In previous lattice simulations, the values of  were not estimated. However, 

the following combination is evaluated in Y. Aoki et al.  (2017).


 We extract  from  by using , neglecting  

dependence.

Wχχ′￼

pηℓ,1(0)

Wχχ′￼

pηℓ,1(0) Wχχ′￼

pηℓ,μ(m2
μ) Wχχ′￼

pηℓ,0(0) m2
μ


