• indico アカウント作成の承認は、自動ではなく平日8:30-17:15 の間に手動で行われるため、それ以外の時間帯は承認されるまでに時間がかかってしまいます。申し訳ございません。 The approval of indico account creation is done manually between 8:30 am and 5:15 pm on weekdays (JST).
Jul 14 – 18, 2025
Yukawa Institute for Theoretical Physics, Kyoto University
Asia/Tokyo timezone

Janet Hung: A 2D-CFT Factory: Critical Lattice Models from Competing Anyon Condensation in SymTO/SymTFT

Jul 17, 2025, 10:00 AM
1h
Panasonic Auditorium, Yukawa Hall (Yukawa Institute for Theoretical Physics, Kyoto University)

Panasonic Auditorium, Yukawa Hall

Yukawa Institute for Theoretical Physics, Kyoto University

Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502 Japan

Description

In this talk, we introduce a CFT factory'' : a novel algorithm of methodically generating 2D lattice models that would flow to 2D conformal fixed points in the infrared. These 2D models are realised by giving critical boundary conditions to 3D topological orders (symTOs/symTFTs) described by string-net models, often called the strange correlators. We engineer these critical boundary conditions by introducing a commensurate amount of non-commuting anyon condensates. The non-invertible symmetries preserved at the critical point can be controlled by studying a novelrefined condensation tree''. Our structured method generates an infinite family of critical lattice models, including the A-series minimal models, and uncovers previously unknown critical points. Notably, we find at least three novel critical points (c ≈1.3, 1.8, and 2.5 respectively) preserving the Haagerup symmetries, in addition to recovering previously reported ones. The condensation tree, together with a generalised Kramers-Wannier duality, predicts precisely large swathes of phase boundaries, fixes almost completely the global phase diagram, and sieves out second order phase transitions. This is not only illustrated in well-known examples (such as the 8-vertex model related to the A5 category) but also further verified with precision numerics, using our improved (non-invertible) symmetry-preserving tensor-network RG, in novel examples involving the Haagerup symmetries. We show that critical couplings can be precisely encoded in the categorical data (Frobenius algebras and quantum dimensions in unitary fusion categories), thus establishing a powerful,
systematic route to discovering and potentially classifying new conformal field theories.

Presentation materials

There are no materials yet.