Mini-workshop on "Jamming, rheology and granular matter"

Mean-field theory of vibrational density of states of jammed packing

PRE 106 024904 (2022)

Harukuni Ikeda (YITP, Kyoto Univ.) Masanari Shimada (IIS, Tokyo Univ.)

東京大学 生産技術研究所 Institute of Industrial Science, The University of Tokyo

What is granular matter?

Macroscopic particles where the thermal fluctuations are negligible.

M&M Candies

Forms

Sand & rock

Snow powders

Grains

What is the jamming transition?

The jamming transition is a phase transition from fluid to solid at zero temperature

Minimal model to study jamming

Frictinless spherical particles

Wet foams

Minimal model to study jamming

Frictinless spherical particles

Contact number

Contact number

Power law = Critical phenomena!

Vibrational density of states

Scaling of the vibrational density of states

 δz controls the onset of the soft-modes

Motivation

Previous theoretical studies (scaling)

Effective medium theory (lattice systems)

- M. Wyart (2010)
- E. DeGiuli et al. (2014) $\delta z \sim \delta \varphi^{1/2}, \ \omega_* \sim \delta z$

Replica liquid theory (particle systems)

- G. Parisi and F. Zamponi (2010)
- P. Charbonneau et al. (2014)

Exact results in $d \to \infty$

Current works (quantitative)

We aim to develop a quantitative theory for calculating physical quantities in finite dimensions.

Theory

Variational argument

M. Muller and M. Wyart (2014)

Assumption of the marginal stability

The aging will stop when the system becomes marginally stable

 $\lambda_{\min} \approx 0$

H. Ikeda and M. Shimada (2022)

Hessian of interaction potential

$$V_N = \sum_{\mu=1}^{N_c} v(h_{\mu})$$

$$H_{ij}^{ab} = \nabla_i^a \nabla_j^b V_N = \sum_{\mu=1}^{N_c} v''(h_\mu) \nabla_i^a h_\mu \nabla_j^b h_\mu + \sum_{\mu=1}^{N_c} v'(h_\mu) \nabla_i^a \nabla_j^b h_\mu$$
$$H^{(1)} \qquad H^{(2)}$$

Hessian

Calculation of $H^{(2)}$

Diagonalization

$$H^{(2)} \to (O^t H^{(2)} O)^{ab}_{ij} = \lambda^a_i \delta_{ij} \delta_{ab}$$

Mean-field approximation

$$\lambda_i^a \approx \langle \lambda \rangle = \frac{1}{Nd} \operatorname{Tr} H^{(2)} = \frac{ze}{d}$$

Pre-stress

$$e = -\frac{d-1}{N_c} \sum_{\mu=1}^{N_c} \frac{h_{\mu}}{r_{\mu}} = (d-1) \left\langle \frac{\sigma_{\mu} - r_{\mu}}{r_{\mu}} \right\rangle$$

Hessian

Calculation of $H^{(1)}$

Transformation $H^{(1)} \to (O^{t} H^{(1)} O)_{ii}^{ab} = \sum (O \nabla h_{\mu})_{i}^{a} (O \nabla h_{\mu})_{i}^{b}$ μ **Approximation by random variable** $(\nabla h_{ij})_k^a = (\delta_{ki} - \delta_{kj}) \frac{x_i^a - x_j^a}{|x_i - x_j|}$ X_i **Random variable** $(O\nabla h_{\mu})_{i}^{a} \approx C\xi_{i}^{a} \longleftarrow \langle \xi_{i}^{a} \rangle = 0, \ \langle \xi_{i}^{a} \xi_{j}^{b} \rangle = \delta_{ij} \delta_{ab}$ $|C\xi|^2 = |O\nabla h_{\mu}|^2 = |\nabla h_{\mu}|^2 \to C = \sqrt{\frac{2}{Nd}}$

Density of states

Calculation of minimal eigenvalue

Marchenko-Pastur Distribution

$$\rho(\lambda) = \frac{d}{z} \rho_{\rm MP}(d\lambda/z + e)$$

$$\rho_{\rm MP}(\lambda) = \frac{z}{2d} \frac{\sqrt{(\lambda_{+} - \lambda)(\lambda - \lambda_{-})}}{2\pi\lambda}, \ \lambda_{\pm} = \left(1 \pm \sqrt{\frac{2d}{z}}\right)^{2}$$
Minimal eigenvalue

$$\lambda_{\rm min} = \frac{z}{d} \left(1 - \sqrt{\frac{2d}{z}}\right)^{2} - \frac{z}{d}e$$

Theory

Contact number

Minimal eigenvalue

$$\lambda_{\min} = \frac{z}{d} \left(1 - \sqrt{\frac{2d}{z}} \right)^2 - \frac{z}{d} e$$

$$z(e) = \frac{2d}{(1 - e^{1/2})^2} \sim 2d(1 + e^{1/2})$$

H. Ikeda and M. Shimada (2022)

Result

Contact number

Contact number

Result

ε: Difference between theory and numerical results

 $\varepsilon \sim 1/d \rightarrow 0$, meaning that the theory become exact in the high dimensional limit.

Vibrational density of states

Eigenvalue distribution

Result

Vibrational density of states

ω

Result

Vibrational density of states

ω

ω

Summary

- We calculated the contact number and density of states above the jamming transition point.
- Our theoretical prediction agrees well with the numerical results near the jamming transition point.
- Some deviations are observed far from jamming.
 Future work
- Can we extended the theory for more complex systems such as non-spherical particles, frictional particle, sticky particles, and so on?
- Quasi-localized mode