Anomalous Enhancement of Structural Stability due to Static Friction

20+10min 19pages

Ryudo Suzuki (Sasa-Group, Kyoto Univ.) Shin-ichi Sasa (Kyoto Univ.)

2025/07/09 Mini-workshop on "Jamming, rheology and granular matter"

Friction

What is Friction?

- A force that resists external tangential force at solid contact
- Observed over a wide range of scales

Amontons-Coulomb law (17-18th centuries)

- Universal empirical laws at the macroscopic scale
- The key point is that tangential force can resist up to the following threshold:

$$|f_t| \leq \mu f_n$$

H. Matsukawa, The Physics of Friction, Iwanami Shoten (2012).

Material-specific value: Friction coefficient

Friction-Stabilized Structure

Examples of Friction-Stabilized Structure

• Let's consider the static state of a system with friction

Sandpile

House of cards

Arch bridge

The aqueduct in Maintenon, built in the 17th century

 As is well recognized, friction and geometry work together to suppress sliding and enhance mechanical stability

How do these stability depend on the friction coefficient?

Effects of Friction Coefficient

The effects of friction coefficient are usually gradual.

• Rigidity transition point

✓ We focus on a phenomenon with a singular dependence on the friction coefficient.

Phenomena of Interest

metal

floor

wood floor

Credit: Tani Marie

Setup

We define the threshold f* as the **yield force**.

We investigate how the yield force depend on the friction coefficient.

Rigid-Body Case (1/2)

First, we consider the case of rigid cylinders (i.e., non-deformable).

- $\,m\,$: mass of cylinder
- μ : friction coefficient with the floor

Conditions

Variables

- Equilibrium of forces $\begin{cases} \sqrt{3}a + b f mg = 0\\ \sqrt{3}a + b d + 2mg\\ -a + \sqrt{3}b + 2e = 0\\ b e = 0 \end{cases}$
- Slip condition (Coulomb law)
- At the onset of sliding, we **assume**

(a, b, c, d, e, f)

 $e = \mu d$ c = 0

Yield force $f_0 = rac{3\mu_c - \mu}{\mu_c - \mu} mg ~~ {critical point} {\mu_c = 2 - \sqrt{3}} {\simeq 0.268}$

6/19

6vars

6eqs.

Rigid-Body Case (2/2)

7/19

Question

Rigid-Body Case

- Yield force diverges at $\mu = \mu_c$
- However, a rigid-body is an idealized limit

Question

- 1. How is this phenomenon observed in realistic elastic bodies?
- 2. Can the yield force be predicted from the material properties (such as Young's modulus and Poisson's ratio)?
 - 1. Model (DEM) & Simulation
 - 2. Perturbation Analysis
 - 3. Main Results

Outline

1.Model (DEM) & Simulation2.Perturbation Analysis3.Main Results

Model (DEM)

9/19

P.A. Cundall and O.D.L. Strack, Géotechnique 29 (1979).

A contact force model based on Amontons-Coulomb law

 $\vec{f_n}$

Normal component

$\vec{v}_{n} \qquad \vec{f}_{n}$ $\vec{f}_{n} = -k_{n}\vec{\delta}_{n} - \eta_{n}\vec{v}_{n}$ Elastic Damping

Tangential component

Measurement of Yield Force in Simulation 10/19

We record the **normal force f(t)** during compression

Numerical Results

- At $\mu = \mu_c$, the yield force exhibits an **anomalous increase** as $k_n r/mg \rightarrow \infty$.
- The following scaling behavior is observed. $f/mg \rightarrow \begin{cases} f_0/mg & \mu < \mu_c \\ O(\sqrt{k_n r/mg}) & \mu = \mu_c & k_n r/mg \to \infty \\ O(k_n r/mg) & \mu > \mu_c \end{cases}$
- ✓ Based on **DEM**, we derive the yield force and its scaling using perturbation analysis.

Outline

1.Model (DEM) & Simulation**2.Perturbation Analysis**3.Main Results

Perturbation and Small Parameter

12/19

Aim: To obtain a perturbative expression for the yield force in the limit of large stiffness

Small parameter

$$\epsilon \equiv \frac{mg}{k_n r}$$

• $\epsilon = 0$ corresponds to a rigid-body limit.

We consider the following limit:

$$\epsilon
ightarrow 0$$
 with $\kappa \equiv rac{k_n}{k_t}$ (fixed)

Equation for the Yield force

Displacement and unit vector

- To describe the displacement, we define four variables: $(\delta_{11}, \delta_{21}, \delta_{22}, \theta)$
- To describe the geometric configuration, we define unit vectors: $\vec{n} = (n_x, n_y)$ $\vec{t} = (t_x, t_y)$

Contact forces and unit vectors can be described using displacements:

 $a = a(\delta_{11}, \delta_{21}, \delta_{22}, \theta)$ $n_x = n_x(\delta_{11}, \delta_{21}, \delta_{22}, \theta)$

etc.

13/19

Force balance and sliding condition

$$\begin{cases} f + 3mg = 2d \\ e = \mu d \end{cases} & \& \begin{cases} b - e = 0 \\ an_x + b(t_x + 1) = 0 \\ 2an_y + 2bt_y - f - mg = 0 \end{cases}$$

Complex...

Equation to be Solved

- We introduce a new variables: $x = \delta_{11} \delta_{21}$, $y = \delta_{22}$, $z = \delta_{21}$
- After all, previous equations leads to the following **two equations**:

All we have to do is to **solve EQZ** in the limit $\epsilon \to 0$ with κ fixed

The first-order correction term **diverges** as $\mu \rightarrow \mu_c$

The naive perturbation breaks down; singular perturbation is needed

E.g., wood cylinder E = 10 GPa, $\nu = 0.3$, $\rho = 0.5$ g/cm³, r = w = 1 cm, $\kappa = 2.5$ C. M. Pereira et al., Nonlin. Dyn. 63, 681 (2011).

$$\epsilon = 1.8 \times 10^{-7} \longrightarrow \begin{cases} f(\mu = 0.2) = 7.5 \times 10^{-2} \,\mathrm{N} \\ f(\mu = 0.4) = 5.3 \times 10^{4} \,\mathrm{N} \end{cases} \mathbf{I} \times 10^{6} \,\mathrm{II}$$

Outline

1.Model (DEM) & Simulation2.Perturbation Analysis3.Main Results

Main result

17/19

Scaling

$$\frac{f_{\epsilon} + 3mg}{mg} = \epsilon^{-1} \left(z_{\star} + \sqrt{z_{\star}^2 + 4\epsilon r^2 \Phi(\mu)} \right) \bigstar$$

Remind sign of
$$\mathcal{Z}_{\star} \xrightarrow{-0} \stackrel{+}{\mu_c} \mu$$

• $\mu = \mu_c \Rightarrow (f_{\epsilon} + 3mg)/mg = \epsilon^{-1} \left(\varkappa + \sqrt{\varkappa} + 4\epsilon r^2 \Phi(\mu) \right)$
 $= O(\epsilon^{-1/2})$

•
$$\mu > \mu_c \implies (f_{\epsilon} + 3mg)/mg = \epsilon^{-1} \left(z_{\star} + \sqrt{z_{\star}^2 + 4\epsilon r^2 \Phi(\mu)} \right)$$

= $O(\epsilon^{-1})$

We can derive scaling straightforwardly from **★**

18/19

Summary and Outlook

We studied the yield force in a system of **three stacked cylinders**:

- 1. For rigid-body case, the yield force diverges at μ_c
- 2. For elastic case, the yield force shows a singular increase near μ_c
- 3. A simple expression and the scaling behavior can be derived using singular perturbation analysis

Are these results real?

Experiment

