This talk is based on JPSJ 94 (2025) 3, 031006

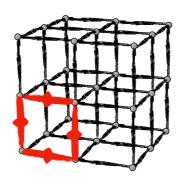
AI技術の進展と素粒子物理学、格子QCDへの応用

Advances in Al Technologies and Their Applications to Particle Physics and Lattice QCD

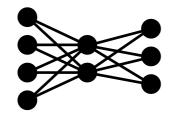
富谷昭夫 [東京女子大学 (専任講師)

理研R-CCS (客員研究員)、京都大学 (特定准教授, 9/1より)]

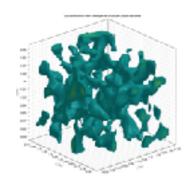
Outline of my talk



Lattice QCD?



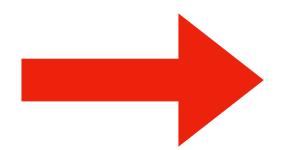
Machine learning

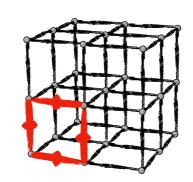


Production of configurations

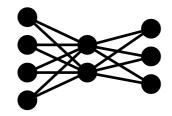
Slide

Outline of my talk

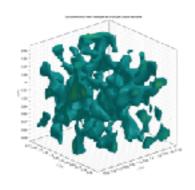




Lattice QCD?



Machine learning



Production of configurations

Slide

Lattice QCD = non-perturbative input for phenomenology

Α	Parameters of the Standard Model			[hidə]	
dia	Symbol	Description	Renormalization scheme (point)	Value	
1	m _e	electron mass		0.510 998 950 69(16) MeV/c ²	
2	m_{μ}	muon mass		105.658 3755(23) MeV/c ²	
3	m_{τ}	tau mass		1 776.86(12) MeV/c ²	
4	m _u	up quark mass	$\mu_{\overline{\rm MS}}$ = 2 GeV	2.16 ^{+0.49} _{-0.26} MeV/c ²	Lattice QCD is needed
5	$m_{\rm d}$	down quark mass	$\mu_{\overline{\rm MS}}$ = 2 GeV	4.67 ^{+0.48} _{-0.17} MeV/c ²	Lattice QCD is needed
6	m _s	strange quark mass	$\mu_{\overline{\rm MS}}$ = 2 GeV	93.4 ^{+8.6} _{-3.4} MeV/c ²	Lattice QCD is needed
7	m _c	charm quark mass	$\mu_{\overline{\rm MS}} = m_{\rm c}$	1.27(2) GeV/c ²	Lattice QCD is needed
8	$m_{\rm b}$	bottom quark mass	$\mu_{\overline{\rm MS}} = m_{\rm b}$	4.18 ^{+0.03} _{-0.02} GeV/c ²	Lattice QCD is needed
9	m _t	top quark mass	on-shell scheme	172.69(30) GeV/c ²	
10	θ_{12}	CKM 12-mixing angle		13.1°	Lattice QCD is needed
11	θ_{23}	CKM 23-mixing angle		2.4°	Lattice QCD is needed
12	<i>0</i> ₁₃	CKM 13-mixing angle		0.2°	Lattice QCD is needed
13	ō	CKM CP-violating Phase		0.995	Lattice QCD is needed
14	g_1 or g'	U(1) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	0.357	
15	g_2 or g	SU(2) gauge coupling	$\mu_{\overline{\rm MS}} = m_{Z}$	0.652	
16	g_3 or $g_{\rm s}$	SU(3) gauge coupling	$\mu_{\overline{\rm MS}} = m_Z$	1.221	Lattice QCD is needed
17	θ_{QCD}	QCD vacuum angle		~0	
18	v	Higgs vacuum expectation value		246.2196(2) GeV/c ²	
19	$m_{\mathbb{H}}$	Higgs mass		125.18(16) GeV/c ²	

Lattice QCD = non-perturbative input for phenomenology

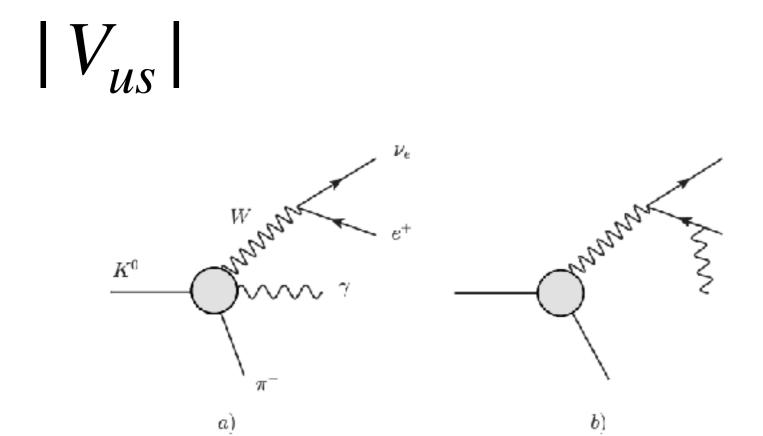
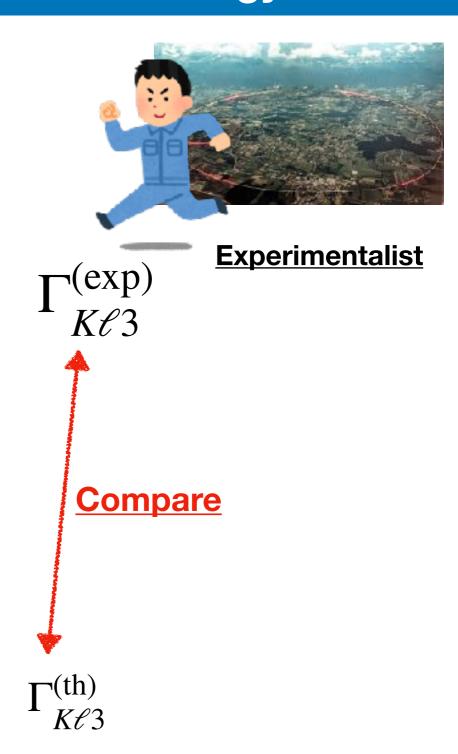
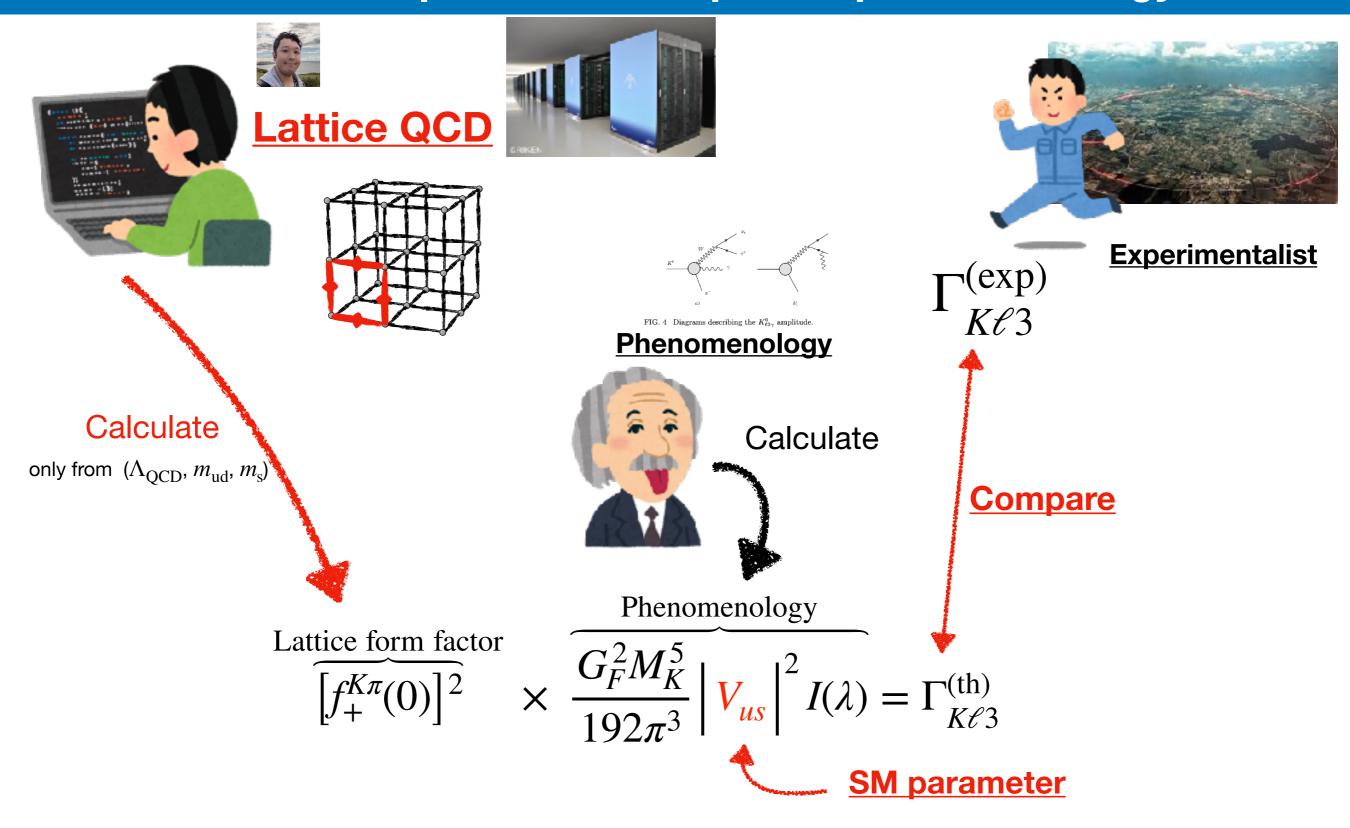


FIG. 4 Diagrams describing the $K_{\ell 3\gamma}^0$ amplitude.



Lattice QCD = non-perturbative input for phenomenology



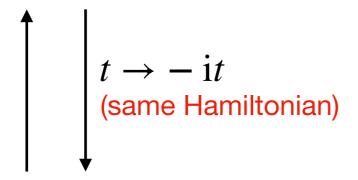
Imaginary time is "Equivalent" to real time

Lattice calculation is done with "Euclidean time" and "path integral"



Operator, real time

Path integral, real time



 $t \rightarrow -it$ (same eigenvalue of H)

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \lim_{T} \langle \Omega \mid \top e^{-H[\phi]T} \mathcal{O}(\phi) \mid \Omega \rangle$$
 Equivalent
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi e^{-S^{(\text{eu})}[\phi]} \mathcal{O}(\phi)$$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\phi e^{-S^{(\text{eu})}[\phi]} \mathcal{O}(\phi)$$

Operator, imaginary time

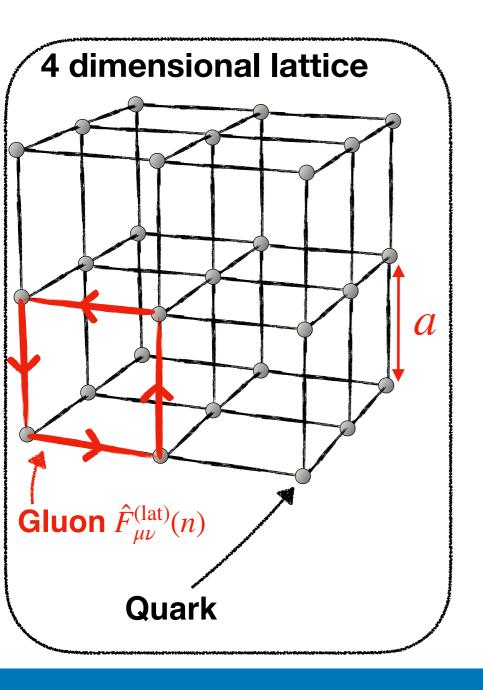
Path integral, imaginary time

Lattice QCD = QCD on a discretized spacetime

Quantum expectation value
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \frac{DU}{10^{11}} \frac{DU}{\text{dim. integral}} \mathcal{O}(U)$$
 $DU \equiv \prod_{n \in \text{lat } \mu = 1}^{4} dU_{\mu}(n)$

$$DU \equiv \prod_{n \in \text{lat } \mu = 1}^{4} dU_{\mu}(n)$$

Finite dim. integral!



a [fm] is a lattice spacing (unit of discretization) needed to define the theory (as differentiation)

Theory on the lattice spacetime

$$S_{\text{QCD}}[U] = \sum_{n} \left[-\frac{1}{g^2} \text{Re tr } e^{ia^2 \hat{F}_{\mu\nu}^{(\text{lat})}[U]} \right] + (\text{Quarks})$$

(after all calculations, we take $a \rightarrow 0$ limit with tuning of g)

This is just finite multi-dimensional $(256^4 \times 4 \times 8 \approx 10^{11})$ dimensional) integration. Not a simulation but a just integration of regulated theory.

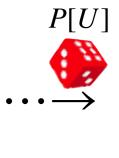
We evaluate this integral using Markov-Chain Monte Carlo

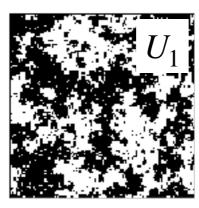
Monte-Carlo integration is available

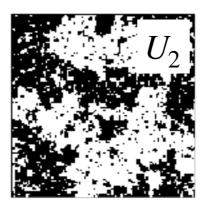
HMC: Simon Duane, Anthony Kennedy, Brian Pendleton and Duncan Roweth1987

 $S_{\text{QCD}}[U] = S_{\text{gauge}}[U] - \log \det(D[U] + m)$

Monte-Carlo: Generate field configurations with " $P[U] \propto e^{-S_{\rm eff}[U]}$ ". Stochastically estimate $\langle \mathcal{O} \rangle$









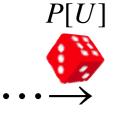
Monte-Carlo integration is available

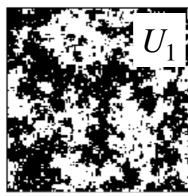
HMC: Simon Duane, Anthony Kennedy, Brian Pendleton and Duncan Roweth1987

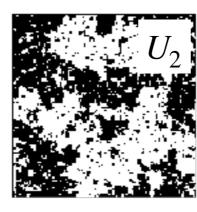
Quantum expectation value
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \frac{DU e^{-S_{\rm QCD}[U]} \mathcal{O}(U)}{10^{11} \, \text{dim. integral}}$$

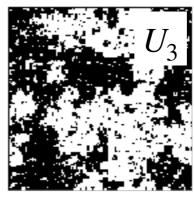
$$S_{\text{QCD}}[U] = S_{\text{gauge}}[U] - \log \det(\mathcal{D}[U] + m)$$

Monte-Carlo: Generate field configurations with " $P[U] \propto e^{-S_{\rm eff}[U]}$ ". Stochastically estimate $\langle \mathcal{O} \rangle$



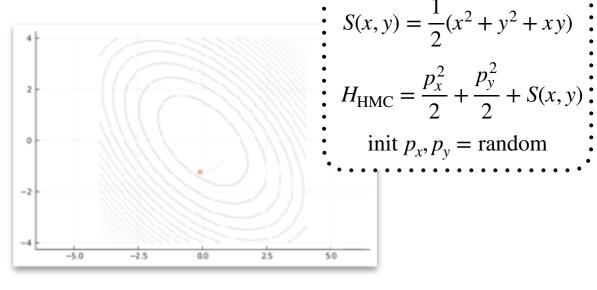






- = Hybrid/Hamiltonian Monte-Carlo (HMC) (De-facto standard Exact algorithm)
 - = Random momentum + EOM Here we regard $S_{
 m OCD}$ as a potential for U

≈Molecular dynamics with random p & given U



$$\langle \mathcal{O} \rangle = \frac{1}{N_{\text{sample}}} \sum_{k=1}^{N_{\text{sample}}} \mathcal{O}[U_k] \quad (N_{\text{sample}} \to \infty)$$

Monte-Carlo integration is available

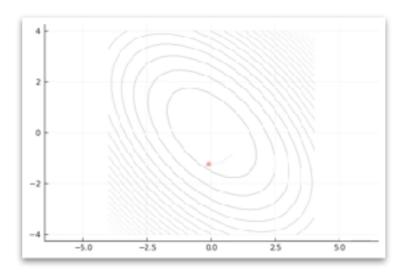
M. Creutz 1980

$$S_{\text{QCD}}[U] = S_{\text{gauge}}[U] - \log \det(\mathcal{D}[U] + m)$$

HMC: Hybrid (Hamiltonian) Monte-Carlo De-facto standard algorithm (Exact)

Random momentum + EOM

= Random walk like algorithm



$$S(x, y) = \frac{1}{2}(x^2 + y^2 + xy)$$

In each time step of "EOM", we have to solve a linear equation $I\!\!D$ (Dslash

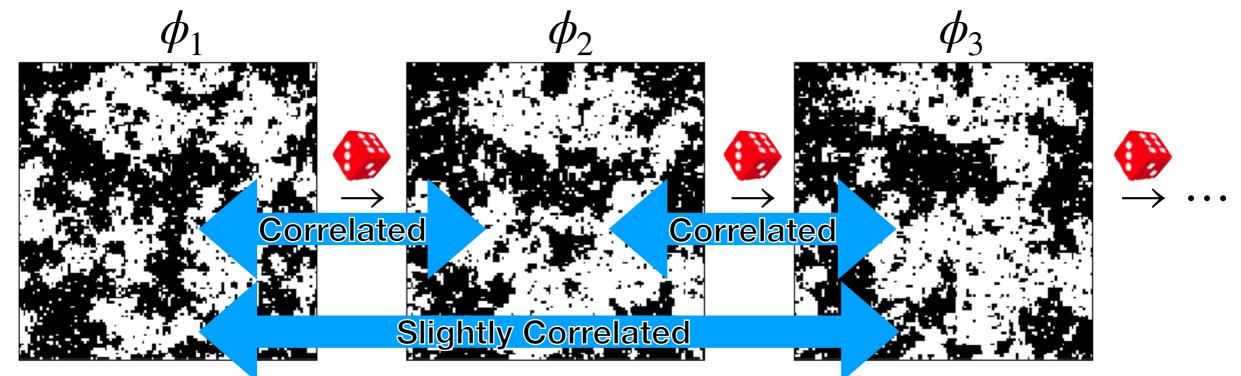
= covariant derivative), which is very expensive. It dominates 50-90 % of numerical cost.

$$D\vec{x} = \vec{b}$$

A huge Linear equation. it is solved by the conjugate gradient

 10^9 dimension for L = 256 (L^4 is the system size)

Correlation between samples = inefficiency of calculation

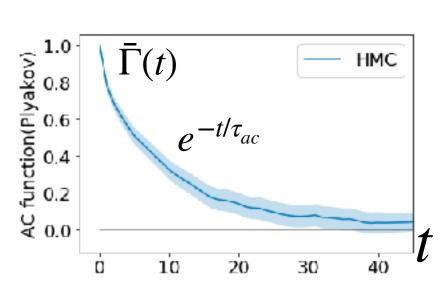


Large Tac means, such simulation is inefficient

$$\langle O[\phi] \rangle = \frac{1}{N} \sum_{k}^{N} O[\phi_{k}] \pm O(\frac{1}{\sqrt{N_{\text{indep}}}})$$

$$N_{\text{indep}} = \frac{N_{\text{sample}}}{2\tau_{ac}}$$

$$\bar{\Gamma}(t) = \frac{1}{N-t} \sum_{k} (O[\phi_{k+t}] - \bar{O})(O[\phi_{k}] - \bar{O}) \sim e^{-t/\tau_{ac}}$$



MCMC is not "totally random" -> auto-correlation

Data from

Nf=3, standard staggered with magnetic field

$$L^3 \times N_t = 16^3 \times 4$$
$$ma = 0.03$$

β=6/g ²	N _{conf}	τ _{ac}	N _{indep}	k=1000	
5.166	15k	47	160		λ /
5.167	20k	224	45	λ1 _	N_{conf}
5. 168	20k	656	15	$N_{indep} =$	$2\tau_{ac}$
5.169	20k	2940	3		z cac
5.170	15k	1306	6	Critical temp.	
5.171	14k	58	116	1	
5.172	10k	48	106		

$$\langle O[\phi] \rangle = \frac{1}{N_{conf}} \sum_{k}^{N_{conf}} O[\phi_k] \pm O(\frac{1}{\sqrt{N_{indep}}})$$

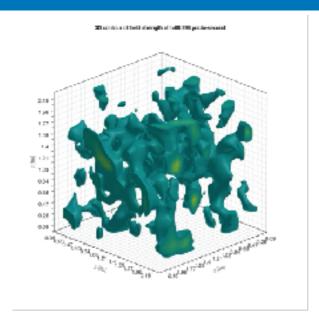
$$au_{ac} \sim \xi^z \sim L^z$$

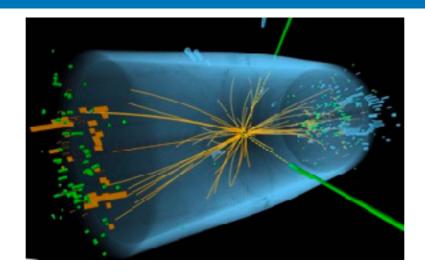
 $au_{ac} \sim \xi^z \sim L^z$ z: Dynamic critical exponent (see 1703.03136) z: algorithm dependent (N. Madras et. al 1988)

If one finds an algorithm with small z (small tau), we can reduce the numerical cost

Can we use ML?

What is our final goal for our research field?





Form factors,
Running coupling,
Equation of states,
Topological susceptibility
etc.

Parameters of the Standard Model [hidə]					
Symbol	Description	Renormalization scheme (point)	Value		
m _e	electron mass		0.510 998 950 69(16) MeV/c ²		
m_{μ}	muon mass		105.658 3755(23) MeV/c ²		
m_{τ}	tau mass		1 776.86(12) MeV/c ²		
$m_{\rm U}$	up quark mass	μ _{MS} = 2 GeV	2.16 ^{+0.49} _{-0.26} MeV/c ²		
$m_{\rm d}$	down quark mass	$\mu_{\overline{\rm MS}}$ = 2 GeV	4.67 ^{+0.48} _{-0.17} MeV/ c^2		
m _s	strange quark mass	μ _{MS} = 2 GeV	93.4 ^{+8.6} _{-3.4} MeV/c ²		
$m_{\rm c}$	charm quark mass	$\mu_{\overline{\rm MS}} = m_{\rm c}$	1.27(2) GeV/c ²		
$m_{\rm b}$	bottom quark mass	$\mu_{\overline{\rm MS}} = m_{\rm b}$	4.18 ^{+0.03} _{-0.02} GeV/c ²		
m _t	top quark mass	on-shell scheme	172.69(30) GeV/c ²		
θ_{12}	CKM 12-mixing angle		13.1°		
θ_{23}	CKM 23-mixing angle		2.4°		
θ_{13}	CKM 13-mixing angle		0.2°		
ō	CKM CP-violating Phase		0.995		
g_1 or g'	U(1) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	0.357		
g_2 or g	SU(2) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	0.652		
g_3 or $g_{ m s}$	SU(3) gauge coupling	$\mu_{\overline{\rm MS}} = m_{\rm Z}$	1.221		
$\theta_{\rm QCD}$	QCD vacuum angle		~0		
v	Higgs vacuum expectation value		246.2196(2) GeV/c ²		
$m_{\rm H}$	Higgs mass		125.18(16) GeV/c ²		

Open source LQCD code in Julia Language

Julia lang = Fast as C, Productive as Python, ML friendly, Portable

Introductive notebook: http://bit.ly/4mej3oe

Not as Python, other languages are not necessary since it is fast

Run almost everywhere: Laptop/Colab/Jupyter/Supercomputers

Advantage: Portability, no-explicit compile, fast, Quick trial-and-error feedback loop

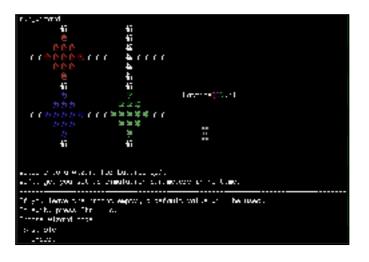
Functionality: SU(Nc)-heatbath, (R)HMC, Self-learning HMC, Dynamical fermions

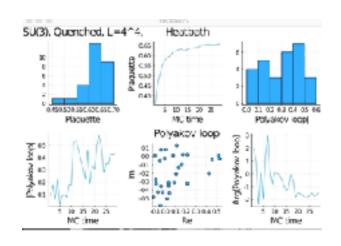
Measurements (chiral condensate, topological charge, etc), MPI, GPU

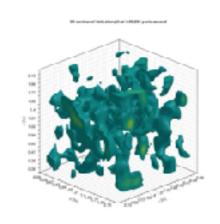
Start LQCD in 5 min

- 1. Download Julia binary
- 2. Add the package through Julia package manager
- 3. Execute!

https://github.com/akio-tomiya/LatticeQCD.jl





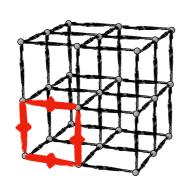


Code

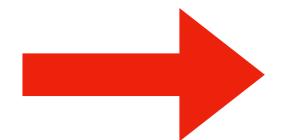
Video: https://youtu.be/Z-CT8A2R -w

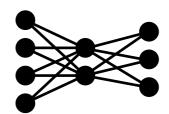
Demo!

Outline of my talk

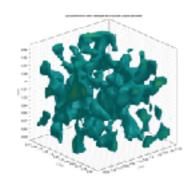


Lattice QCD?





Machine learning



Production of configurations

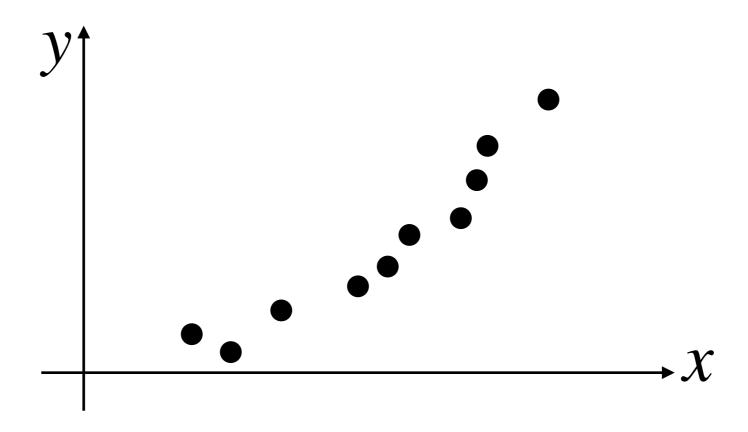
Slide

Machine learning History of 3rd Al boom (4th industrial revolution)

Year	Event	Tomiya
2012	Breakthrough with CNN. AlexNet wins ILSVRC 2012	Master's degree
2013	Higgs discovery	
2015		PhD @ U. of Osaka → Wuhan
2016	AlphaGo wins	I started machine learning
2017	Transformer	
2018		Wuhan -> BNL
2020	GPT-3	Invited Talk in PPP, ML+Phys
2021	AlphaFold2	BNL → IPUT Osaka (Faculty)
2022	ChatGPT released.	「学習物理学」(MLPhys)
2024	Nobel Prize in Physics (Hopfield, Hinton), Chemistry	IPUT Osaka → TWCU (Faculty)
2025	?	Invited Talk in PPP, ML+Phys

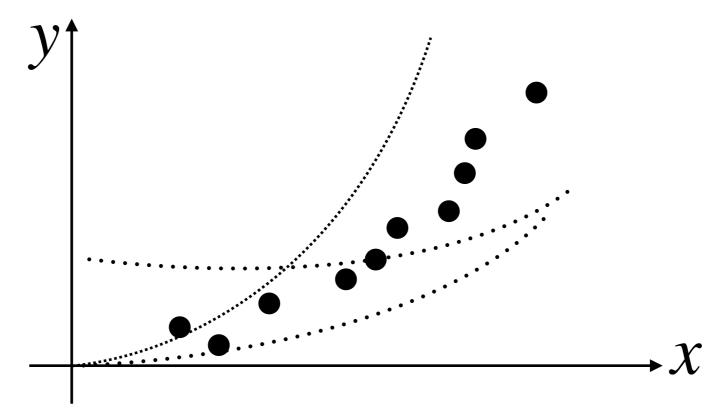
E.g. Linear regression ∈ Supervised learning

Data: $D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots \}$



E.g. Linear regression ∈ Supervised learning

Data:
$$D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots \}$$

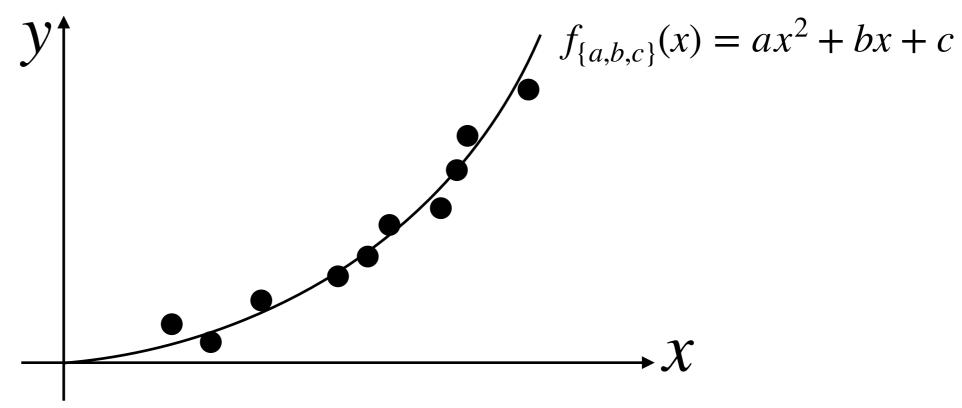


$$f_{\{a,b,c\}}(x) = ax^2 + bx + c \qquad E = \frac{1}{2} \sum_{d} \left| f_{\{a,b,c\}}(x^{(d)}) - y^{(d)} \right|^2$$

a, b, c, are determined by minimizing E (training = fitting by data)

E.g. Linear regression ∈ Supervised learning

Data:
$$D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots \}$$

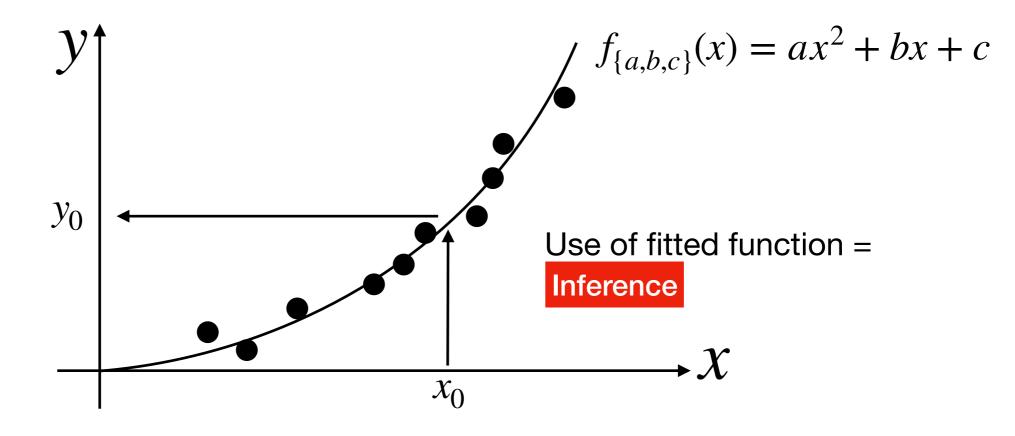


$$f_{\{a,b,c\}}(x) = ax^2 + bx + c \qquad E = \frac{1}{2} \sum_{d} \left| f_{\{a,b,c\}}(x^{(d)}) - y^{(d)} \right|^2$$

a, b, c, are determined by minimizing E (training = fitting by data)

E.g. Linear regression ∈ Supervised learning

Data:
$$D = \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots \}$$

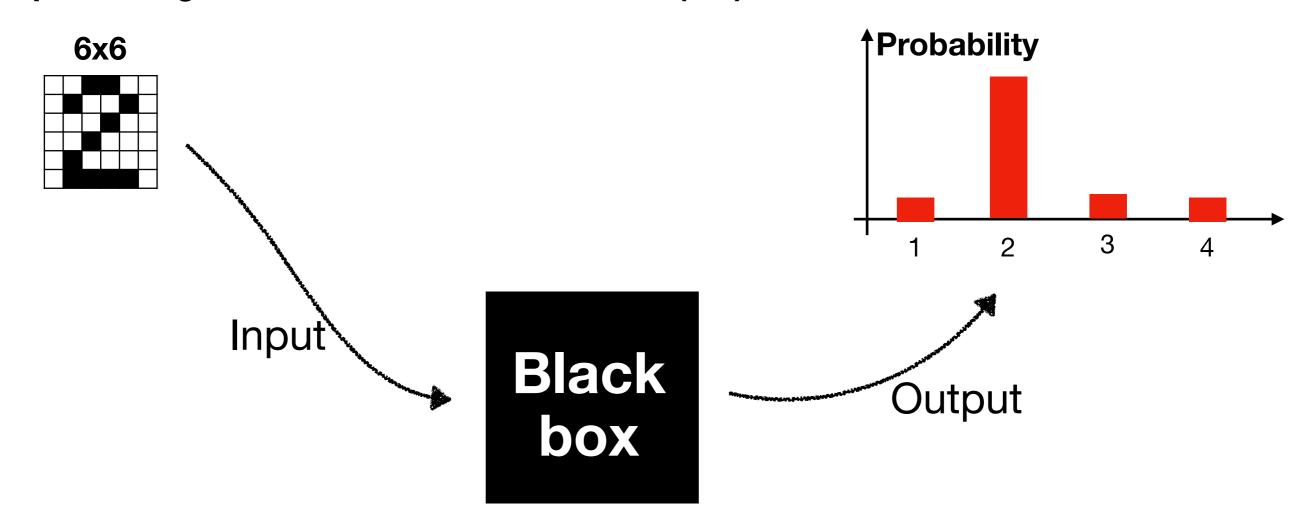


Now we can predict y value which not in the data

In physics language, variational method

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)



How can we formulate this "Black box"? Ansatz?

Neural network is a *universal* approximation function

Example: Recognition of hand-written numbers (0-9)

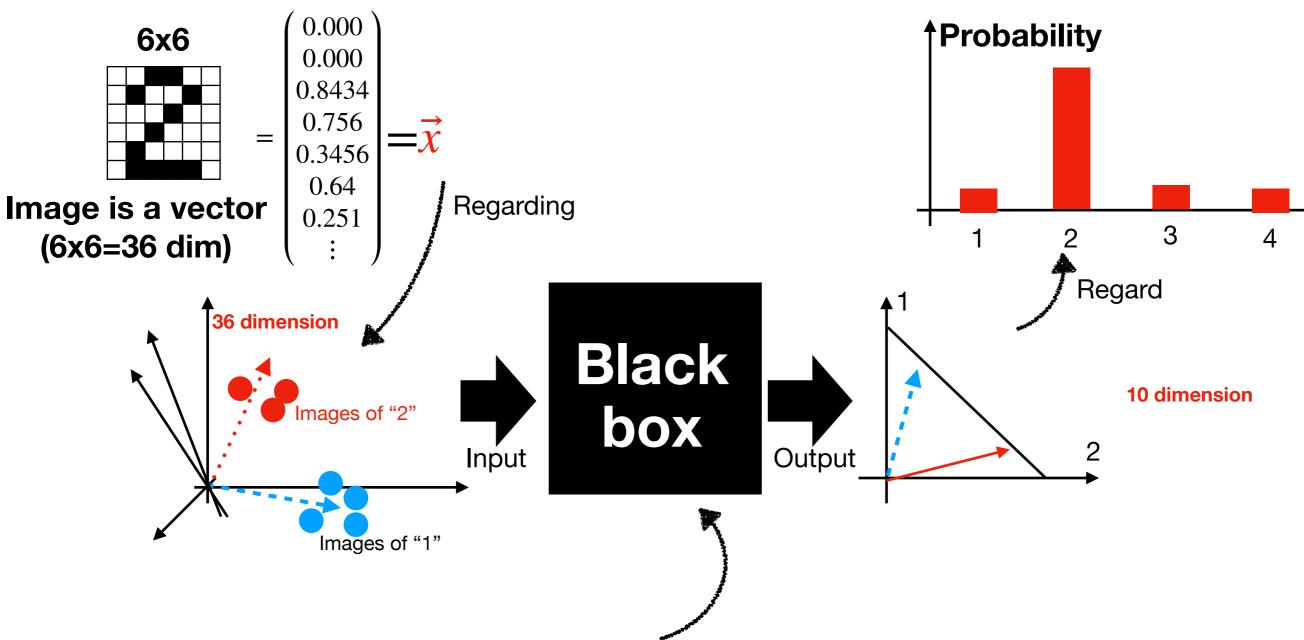
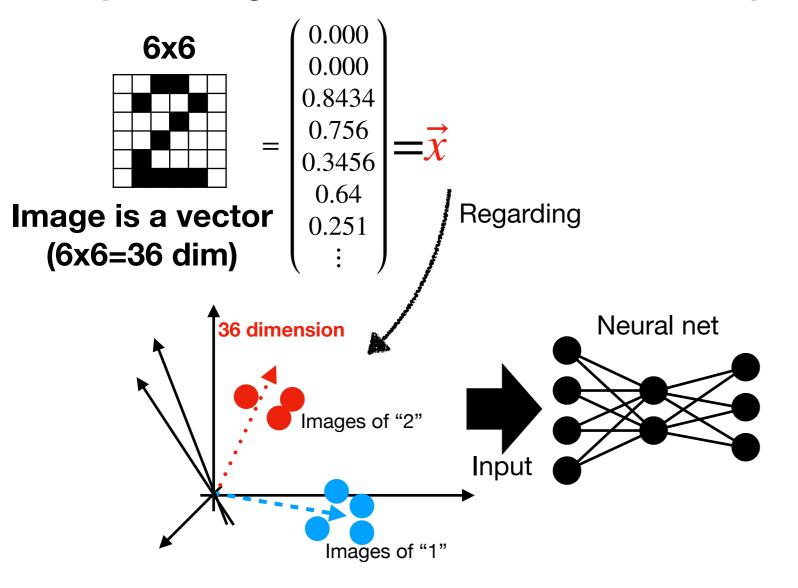


Image recognition = Find a map between two vector spaces

Neural network is a universal approximation function

Example: Recognition of hand-written numbers (0-9)



Affine transformation + element-wise transformation

Layers of neural nets $l = 2, 3, \dots, L, \vec{u}^{(1)} = \vec{x}$

 W^l , $\vec{b}^{(l)}$ are fit parameters

$$\begin{cases} \vec{z}^{(l)} = W^{(l)} \vec{u}^{(l-1)} + \vec{b}^{(l)} & \text{Affine transformation} \\ u_i^{(l)} = \sigma^{(l)}(z_i^{(l)}) & \text{Element-wise (local) non-linear.} \\ \text{hyperbolic tangent-ish function} \end{cases}$$

A fully connected neural net = composite function (Linear&non-linear)

$$f_{\theta}(\vec{x}) = \sigma^{(3)}(W^{(3)}\sigma^{(2)}(W^{(2)}\vec{x} + \vec{b}^{(2)}) + \vec{b}^{(3)})$$

\$\theta\$ is a set of parameters: \$w_{ij}^{(l)}\$, \$b_i^{(l)}\$, \$\dots\$

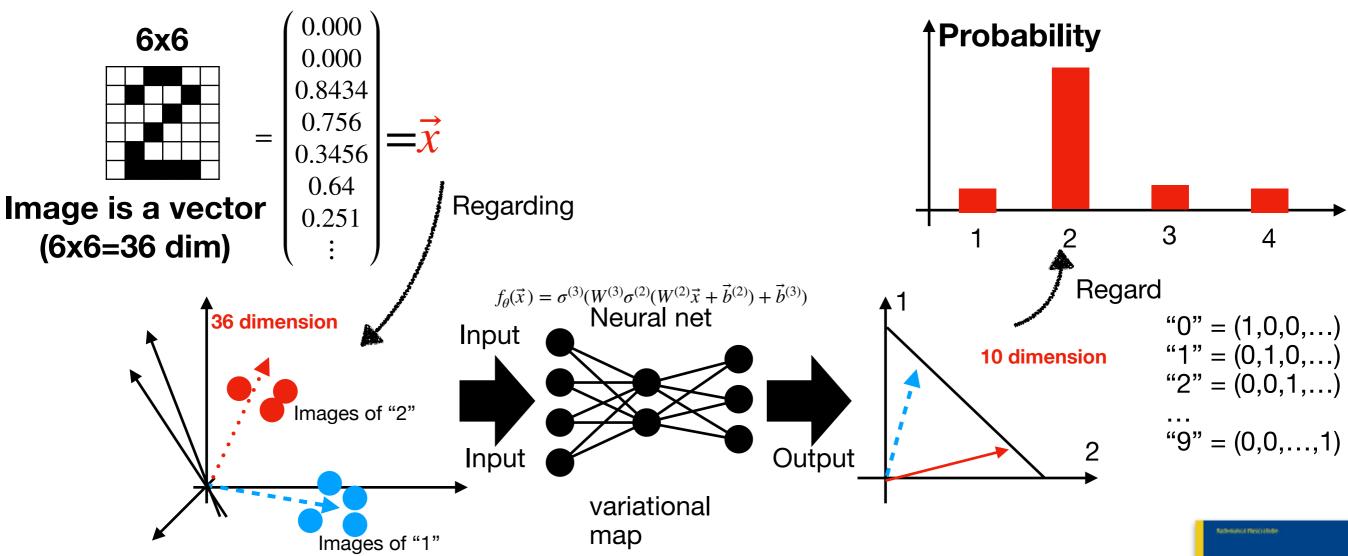
- Input = vectors, output = vectors
- Neural net = a nested function with a lot of parameters (W, b)
- Parameters (W, b) are determined from data (fitting/training)

Neural network = map between vectors and vectors

Physicists terminology: Variational ansatz

Neural network is a *universal* approximation function

Example: Recognition of hand-written numbers (0-9)



Fact: Neural network can mimic any function = A systematic variational function.

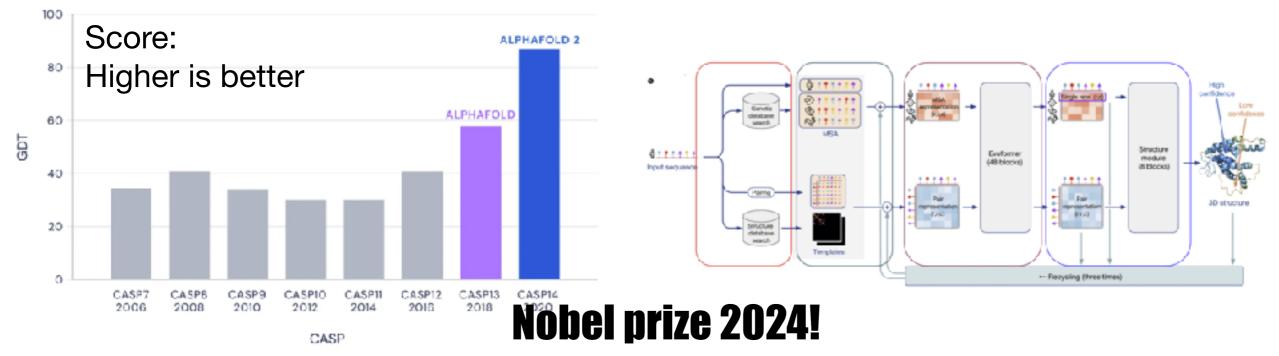
In this example, NN mimics image (36-dim vector) and label (10-dim vector)

El Springer

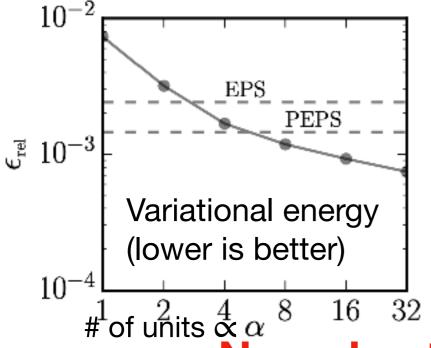
Machine learning

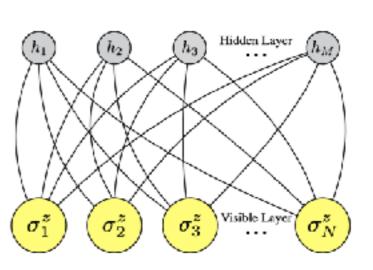
Neural network have done good job

Protein Folding (AlphaFold, John Jumper+, Nature, 2020+), Transformer neural net



Neural network wave function for many body (Carleo Troyer, Science 355, 602 (2017))





Neural net is very useful for science!

Machine learning

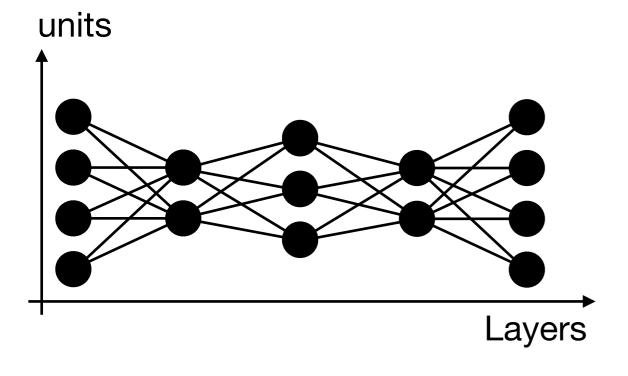
Type 1, fully connected neural networks

Layers of neural nets $l=2,3,\cdots,L, \vec{u}^{(1)}=\vec{x}$ $W^l, \vec{b}^{(l)}$ are fit parameters

$$\begin{cases} \vec{z}^{(l)} = W^{(l)} \vec{u}^{(l-1)} + \vec{b}^{(l)} \\ u_i^{(l)} = \sigma^{(l)}(z_i^{(l)}) \end{cases}$$

Affine transformation (b=0 called linear transformation)

Element-wise (local) non-linear. hyperbolic tangent-ish function



Pros

- Easy to implement
- Good for first trial

Cons

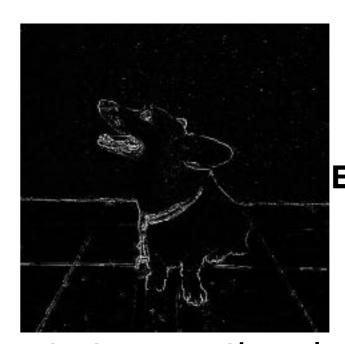
- Not efficient/performant

Type 2, convolutional neural networks

Laplacian filter

0	1	0
1	-2	1
0	1	0

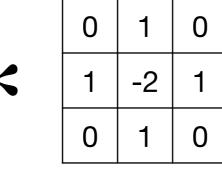
(Discretization of ∂^2)



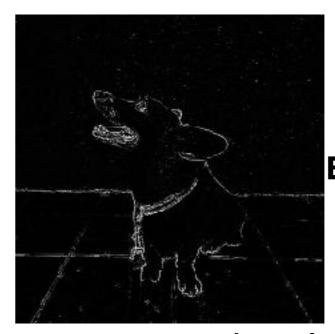
Edge detection

If input is shifted, output is shifted= respects transnational symmetry "Equivariant" = Operation and filtering is commutable

Convolution layer = trainable filter



(Discretization of ∂^2)

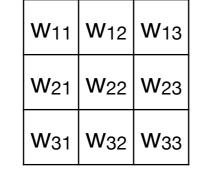


Edge detection

If input is shifted, output is shifted= respects transnational symmetry "Equivariant" = Operation and filtering is commutable

Convolution layer

Trainable filter



Edge detection

Smoothing
(Gaussian filter)

(Training and data determines what kind of filter is realized) Extract features

Fukushima, Kunihiko (1980) Zhang, Wei (1988) + a lot!

Gaussian filter

1 2 1

2 4 2

1 2 1

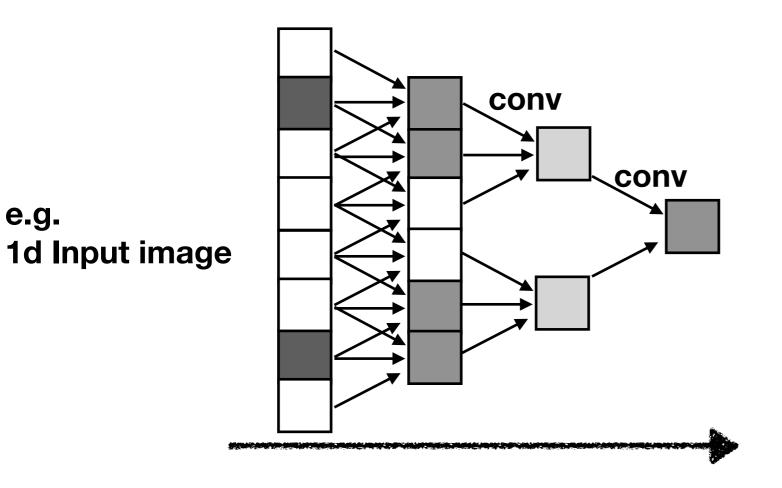
Convolutional NN (layers) respects transnational symmetry!

Equivariance and convolution

Convolutional Neural network have been good job but local

2106.04554

conv ~ neural net with n-th nearest neighbor connections (local)



Long range correlation in input is captured by deep layers since operation is local

However, 1 step of convolutional layer can pick up only local correlation and representability of neural networks is limited. Global correlations are sometimes important.

How can we overcome these difficulties?

Attention layer used in Transformers (GPT etc)

arXiv:1706.03762

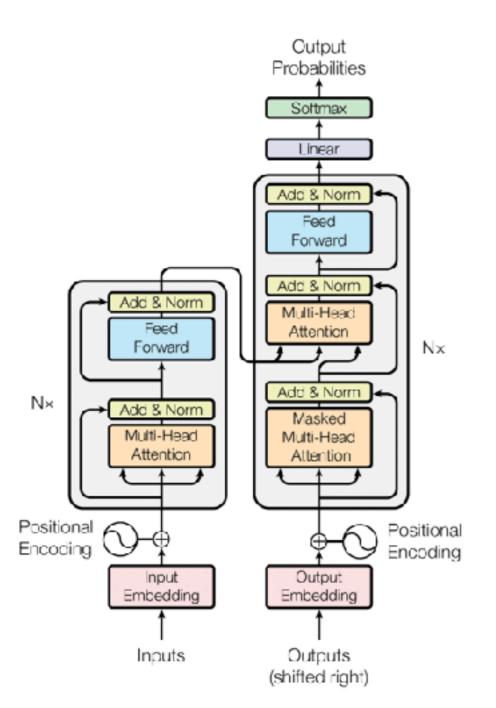


Figure 1: The Transformer - model architecture.



Attention layer (in transformer model) has been introduced in a paper titled

"Attention is all you need" (1706.03762) State of the art architecture of language processing.

Attention layer is essential.

Attention layer can capture non-local correlations

arXiv:1706.03762

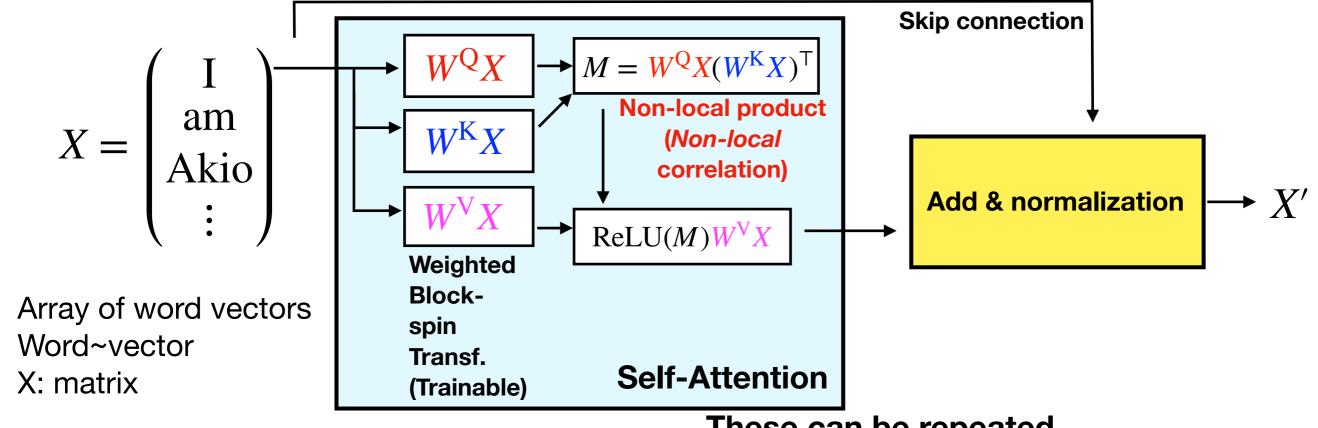
Modifier in language can be non-local

Eg. I am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation with a neural net!

Simplified version of Attention/Transformer



These can be repeated

Transformer shows scaling lows (power law)

arXiv: 2001.08361

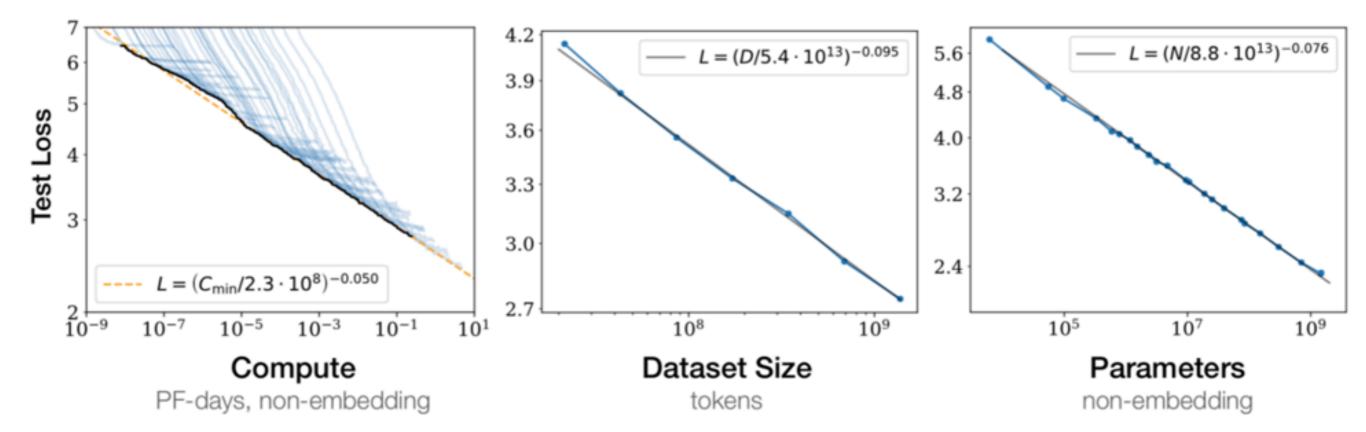
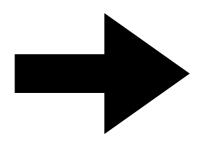


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

- Transformers requires huge data (e.g. GPT uses all electric books in the world)
 Because it has few inductive bias (no equivariance)
- It can be improved systematically

Generative models

Extract/ modeling

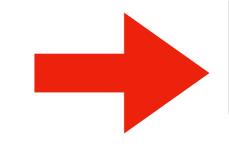


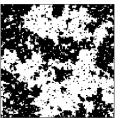
Probability distribution of configurations

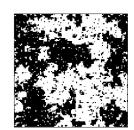
$$P[s] = \frac{1}{Z}e^{-H[s]}$$

Written in fields/local variables

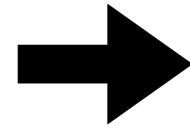
Sampling







Extract/ modeling

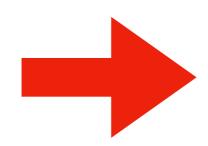


Probability distribution of images

$$P[s] = ?$$

Written in Neural net

Sampling



Machine learning

Surrogate model = NN approximated solution/Trajectory

An "effective model" approach for numerical solutions

$$u_{\rm NN}(x;\theta) \approx u(x)$$

Neural network surrogate models can mimic the effective dynamics: instead of solving PDE/ODE numerically, NN gives an approximate trajectory or solution with reduced computational cost.

Machine learning

Physics informed neural net (PINN),

The physical law (PDE operator F) and boundary conditions (BCs) are encoded directly into the loss function. Training forces the NN to satisfy physics, not only data.

$$L = \sum_{i=1}^{N_{\text{data}}} \left| u_{\text{NN}} \left(x_i; \theta \right) - u_i^{\text{data}} \right|^2 + \lambda \sum_{j=1}^{N_{\text{phys}}} \left| \mathcal{F} \left[u_{\text{NN}} \left(x_j; \theta \right) \right] \right|^2$$

F=0 is the physics law

Machine learning

Equivariance

Let $f_{\theta}(\vec{x})$ be a neural net, (θ is a set of parameters) which takes a value in the same domain of \vec{x} .

If a transformation $\vec{x} \rightarrow T\vec{x}$ acts as

$$f_{\theta}(T\vec{x}) \to Tf_{\theta}(\vec{x}),$$

this neural net is equivariant.

Same concept of covariant in particle physics.

Commutativity with f_{θ} and T

Trainable filter

Edge detection

Smoothing
(Gaussian filter)

Zhang, Wei (1988) + a lot!

Gaussian filter

Fukushima, Kunihiko (1980)

(Training and data determines what kind of filter is realized) Extract features

Configuration generation in LQCD

Smearing = Smoothing of gauge fields

Eg.

We want to smoothen *gauge* field configurations with keeping *gauge* symmetry

Two types:

APE-type smearing Stout-type smearing

M. Albanese+ 1987 R. Hoffmann+ 2007 C. Morningster+ 2003

Smearing

Smoothing with gauge symmetry, APE type

APE-type smearing

M. Albanese+ 1987

R. Hoffmann+ 2007

$$U_{\mu}(n) \rightarrow U_{\mu}^{\mathrm{fat}}(n) = \mathcal{N}\left[(1 - \alpha)U_{\mu}(n) + \frac{\alpha}{6}V_{\mu}^{\dagger}[U](n) \right]$$

Normalization
$$\mathcal{N}\left[M\right] = \frac{M}{\sqrt{M^{\dagger}M}} \quad \text{Or projection}$$

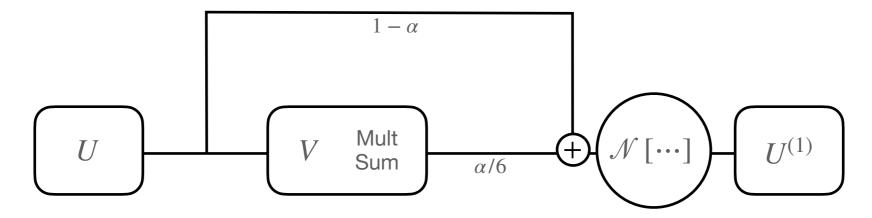
$$V_{\mu}^{\dagger}[U](n) = \sum_{\mu \neq \nu} U_{\nu}(n) U_{\mu}(n+\hat{\nu}) U_{\nu}^{\dagger}(n+\hat{\mu}) + \cdots \qquad V_{\mu}^{\dagger}[U](n) \& U_{\mu}(n) \text{ shows same transformation} \\ \rightarrow U_{\mu}^{\mathrm{fat}}[U](n) \text{ is as well}$$

 $\rightarrow U_u^{\text{fat}}[U](n)$ is as well

Schematically,

$$\longrightarrow \left[(1-\alpha) \longrightarrow + \frac{\alpha}{6} \sum_{\nu} \uparrow \uparrow + \downarrow \downarrow \right]$$

In the calculation graph,



This smoothing is commutable with gauge transformation

Configuration generation in LQCD

Smearing ~ neural network with fixed parameter!

AT Y. Nagai arXiv: 2103.11965

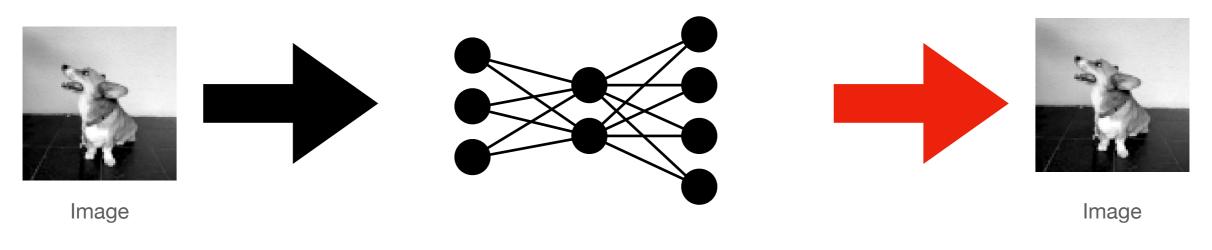
General form of smearing (~smoothing, averaging in space)

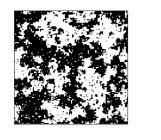
$$\begin{cases} z_{\mu}(n) = w_1 U_{\mu}(n) + w_2 \mathcal{G}[U] & \text{Summation with gauge sym} \\ U_{\mu}^{\text{fat}}(n) = \mathcal{N}(z_{\mu}(n)) & \text{A local function} \\ \text{(Projecting on the gauge group)} \end{cases}$$

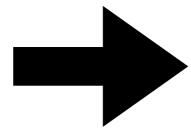
(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)

Multi-level smearing = Deep learning (with given parameters)

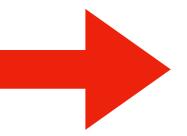
As same as the convolution, we can train weights.

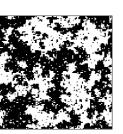






$$z_{\mu}(n) = w_1 U_{\mu}(n) + w_2 \mathcal{G}[U]$$





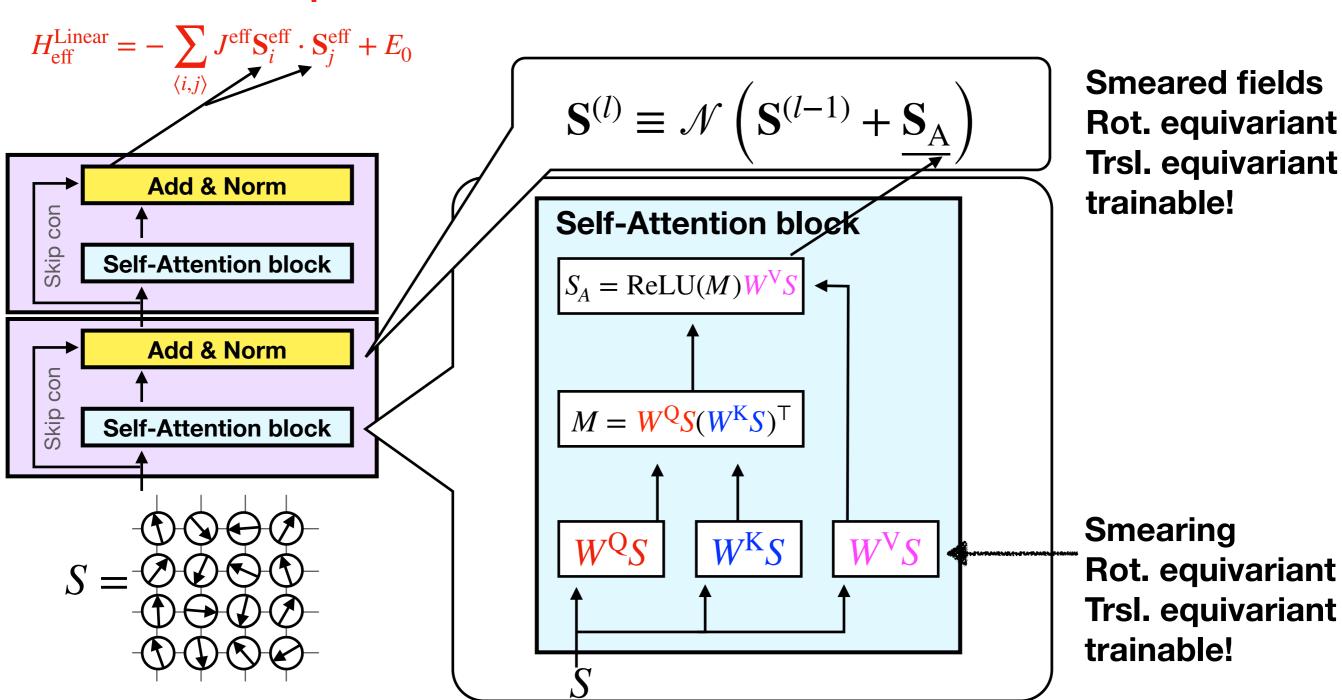
Configuration

Configuration

Self-learning Monte-Carlo Equivariant Attention layer

arXiv: 2306.11527.

We can construct effective hamiltonian with output of Attention layer because "output of Attention = smeared fields with non-local correlation"

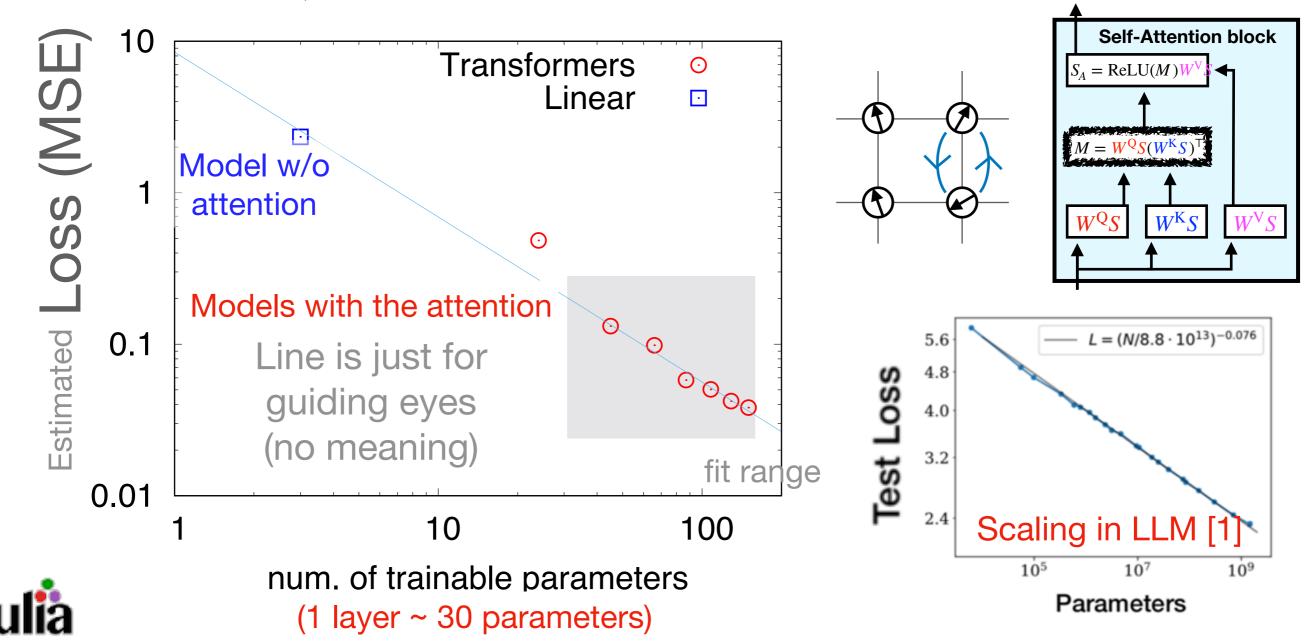


CASK: Covariant Transformer

Previous work for a spin system

arXiv: 2306.11527 + update

We simulate a classical spin-electron system in 2d (~ Kondo system) as a toy model. It is *not* gauge theory but good for a testbed. We utilize self-learning MC with a *covariant transformer* as a surrogate [AT, Y Nagai 2024]. We see that **scaling law**! How about lattice QCD?



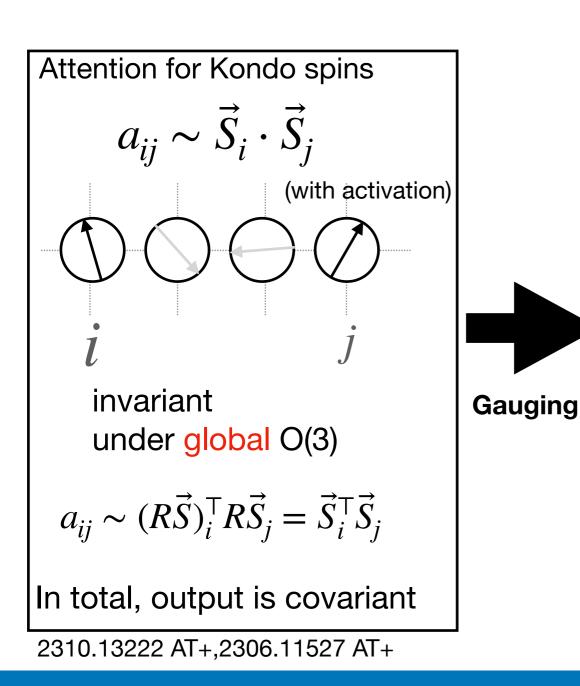
CASK: Covariant Transformer

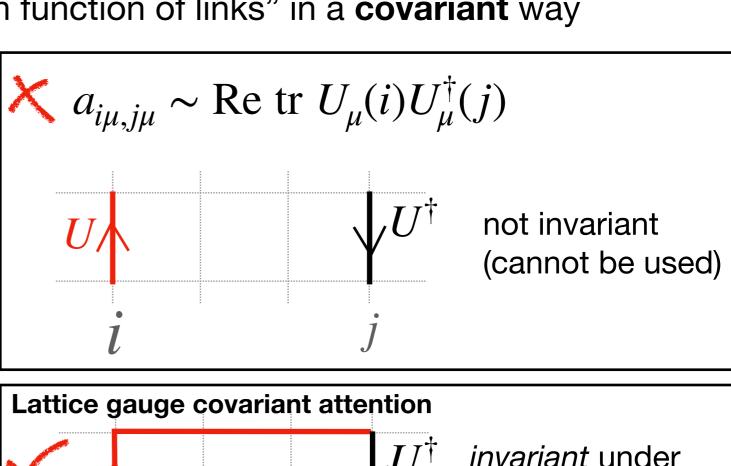
Lattice Gauge covariant attention

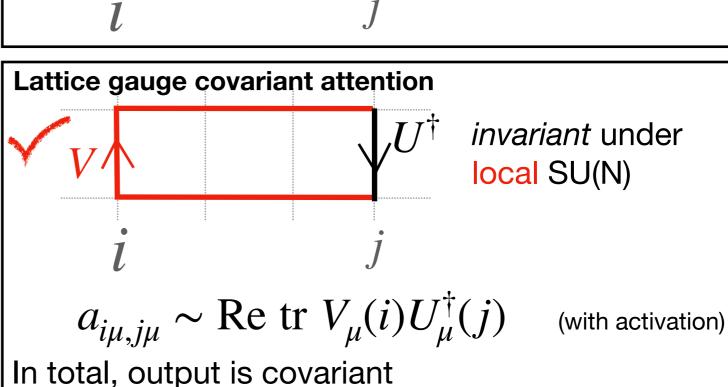
arXiv: 2501.16955

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with "correlation function of links" in a covariant way





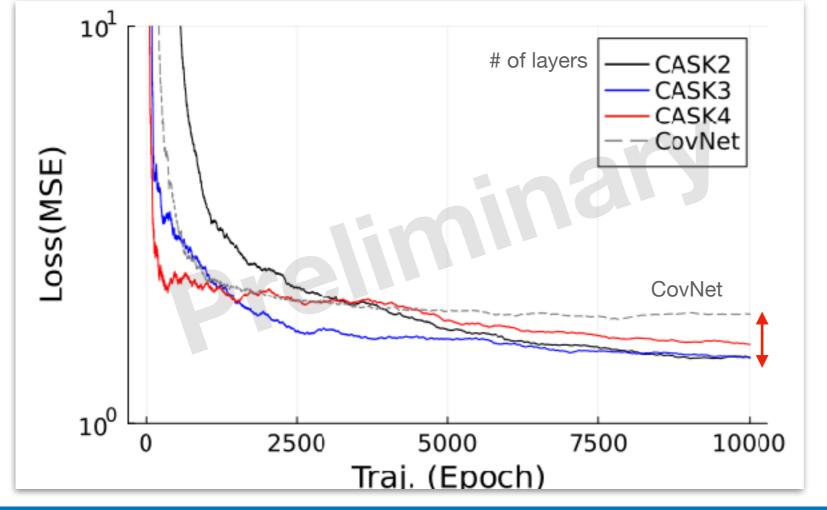


CASK: Covariant Transformer CASK for SU(2), SU(3) gauge theory + fermions

Comparison Covariant convolution (CovNet) and Covariant transformer (CASK)

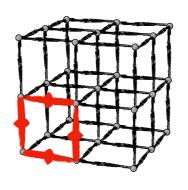
$$U^{(\mathrm{NN-out})} = \begin{cases} U_{\mu}^{(\mathrm{CovNet})} = g_{\theta}^{(\mathrm{CovNet})} U_{\mu}^{(\mathrm{in})} & \text{CovNet (convolution based, baseline)} \\ U_{\mu}^{(\mathrm{CASK})} = g_{\theta}^{(\mathrm{CASK})} U_{\mu}^{(\mathrm{in})} & \text{CASK (transformer based)} \end{cases}$$

$$\operatorname{Loss} = \sum_{\text{data}} \left| S^{(\text{quark})}[U^{(\text{NN-out})}; m = 0.4] - S^{(\text{quark})}[U; m = 0.3] \right|^2 \qquad S^{(\text{quark})}[U; m] = \sum_{n} \phi^{\dagger}(D[U] + m)^{-1}\phi$$
Energy function

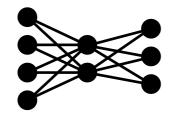


- Dynamical simulation
- $L^4 = 4^4$, SU(2), ma = 0.3 33% larger mass in MD
 - CASK has better expressibility than CovNet (Covariant CNN)
- SU(3) works as well

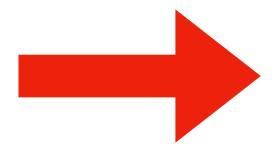
Outline of my talk

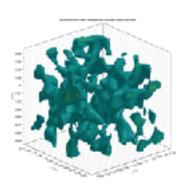


Lattice QCD?



Machine learning





Production of configurations

Slide

Lattice QCD?

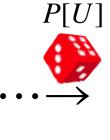
Monte-Carlo integration is available

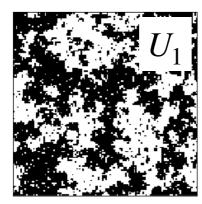
HMC: Simon Duane, Anthony Kennedy, Brian Pendleton and Duncan Roweth1987

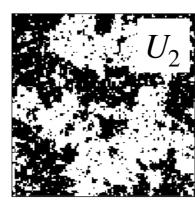
Quantum expectation value
$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \frac{DU}{10^{11}} e^{-S_{\rm QCD}[U]} \mathcal{O}(U)$$

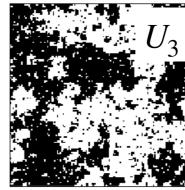
 $S_{\text{QCD}}[U] = S_{\text{gauge}}[U] - \log \det(\mathcal{D}[U] + m)$

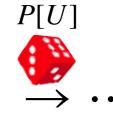
Monte-Carlo: Generate field configurations with " $P[U] \propto e^{-S_{\rm eff}[U]}$ ". Stochastically estimate $\langle \mathcal{O} \rangle$





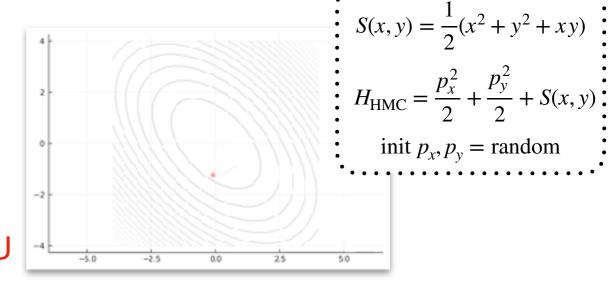






- = Hybrid/Hamiltonian Monte-Carlo (HMC) (De-facto standard Exact algorithm)
 - = Random momentum + EOM Here we regard $S_{
 m OCD}$ as a potential for U

≈Molecular dynamics with random p & given U

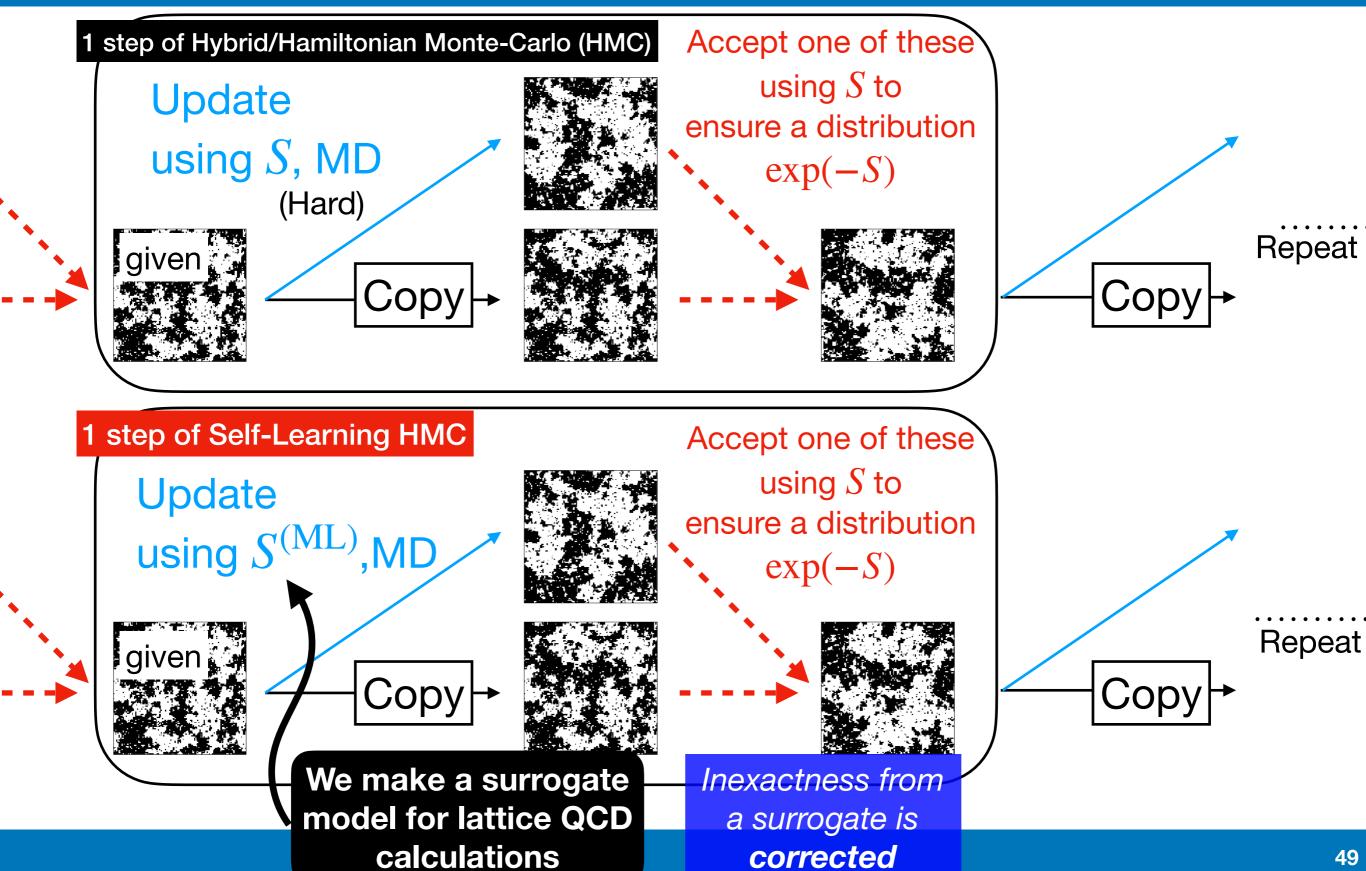


$$\langle \mathcal{O} \rangle = \frac{1}{N_{\text{sample}}} \sum_{k=1}^{N_{\text{sample}}} \mathcal{O}[U_k] \quad (N_{\text{sample}} \to \infty)$$

CASK: Covariant Transformer

Self-learning HMC = Surrogate + Correction = Exact

arXiv: 2306.11527 and ref. therein



Linear effective action/Hamiltonian

arXiv:1610.03137+

We want expectation values with $W[\phi] \propto \exp[-\beta S[\phi]]$

using
$$W_{\rm eff}[\phi] \propto \exp[-\beta S_{\rm eff}[\phi]]$$
 How can we design?

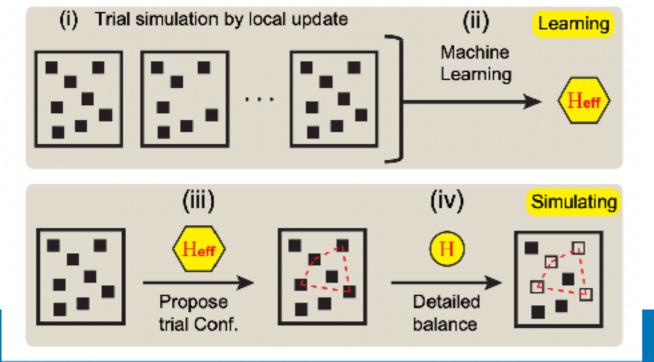
Example in the first paper, classical magnet (Ising like theory)

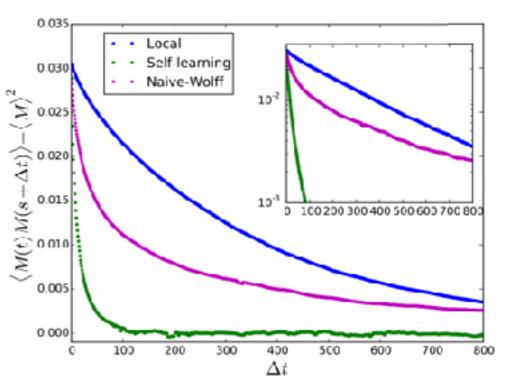
$$S_i = \pm 1$$
 $H = -J \sum_{\langle ij \rangle} S_i S_j - K \sum_{ijkl \in \square} S_i S_j S_k S_l$

2nd term prevents global update algorithm

$$H_{\text{eff}} = E_0 - \tilde{J}_1 \sum_{\langle ij \rangle_1} S_i S_j$$
 (linear)

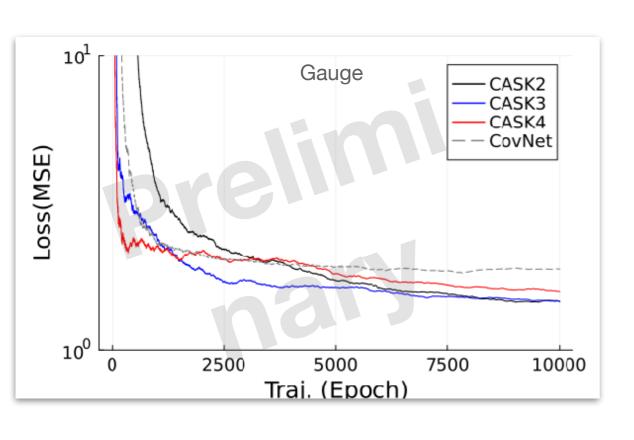
 E_0, \tilde{J}_1 are determined by fit. Minimizing $(H - H_{\rm eff})^2$

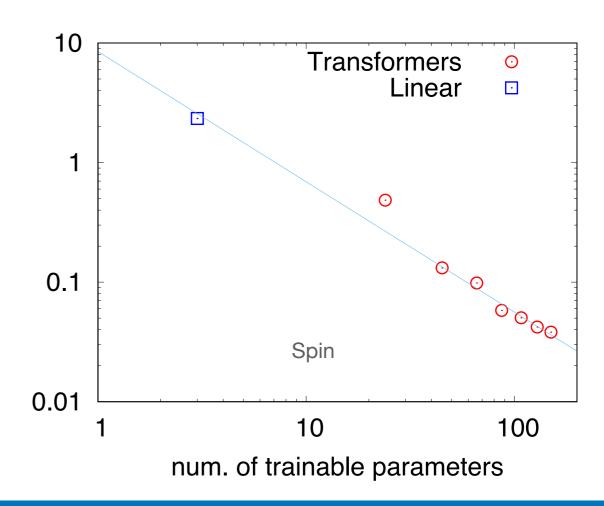




Self-learning MC CASK & spin transformer

Comparison Covariant convolution (CovNet) and Covariant transformer (CASK) and a spin transformer simulations have been done with SL(H)MC





Change of variables makes problem easy

$$\int D\phi e^{-S[\phi]} O[\phi] = \int Dz \left| \det \frac{\partial \phi}{\partial z} \right| e^{-S[\phi[z]]} O[\phi[z]]$$

$$= \operatorname{Jacobian} = J$$

$$S_{\text{eff}}[z] = S[\phi[z]] - \log J[z]$$

$$= \int Dz e^{-S_{\text{eff}}[z]} O[\phi[z]]$$

If this is easy to sample (or integrate), like flat measure/Gaussian, we are happy

Viewpoint: Change of variables makes problem easy

Simplest example: Box Muller

$$\begin{cases} z = e^{-\frac{1}{2}(x^2 + y^2)} & \text{Change} \\ \tan \theta = y/x & \text{of variables} \end{cases}$$

Change of variables sometimes problem easier (this case, it makes the measure flat)

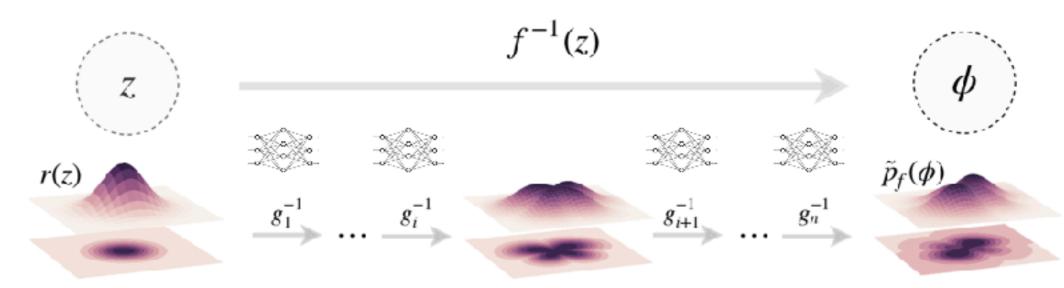
RHS is flat measure $\begin{cases} \xi_1 \sim (0,2\pi) \\ \text{(uniform)} \end{cases}$

We can reconstruct a field config x, yfor original theory like right eq.

$$\begin{cases} x = r \cos \theta & \theta = \xi_1 \\ y = r \sin \theta & r = \sqrt{-2 \log \xi_2} \end{cases}$$

Trivializing map realized using neural network

Normalizing flow? = Change of variable with **neural nets** Tractable Jacobian is realized by checker-board technique



(a) Normalizing flow between prior and output distributions

$$\prod_{i} \int d\varphi_{i} e^{-V(\varphi_{i})} J[\varphi] O[F[\varphi]] \approx \int D\phi e^{-S[\phi]} O[\phi]$$

Problem: Jacobian is difficult = O(V^3)

-> Introduce checker-board decomposition

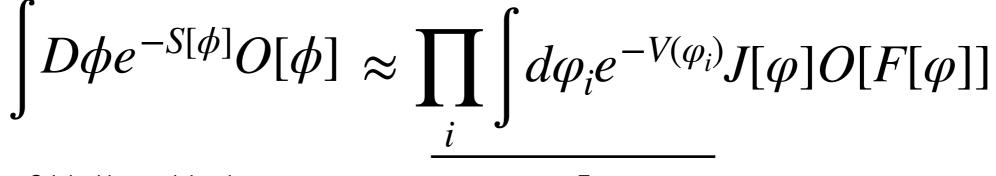
Credit: Daniel Hacket (MIT)

55

Flow based sampling algorithm

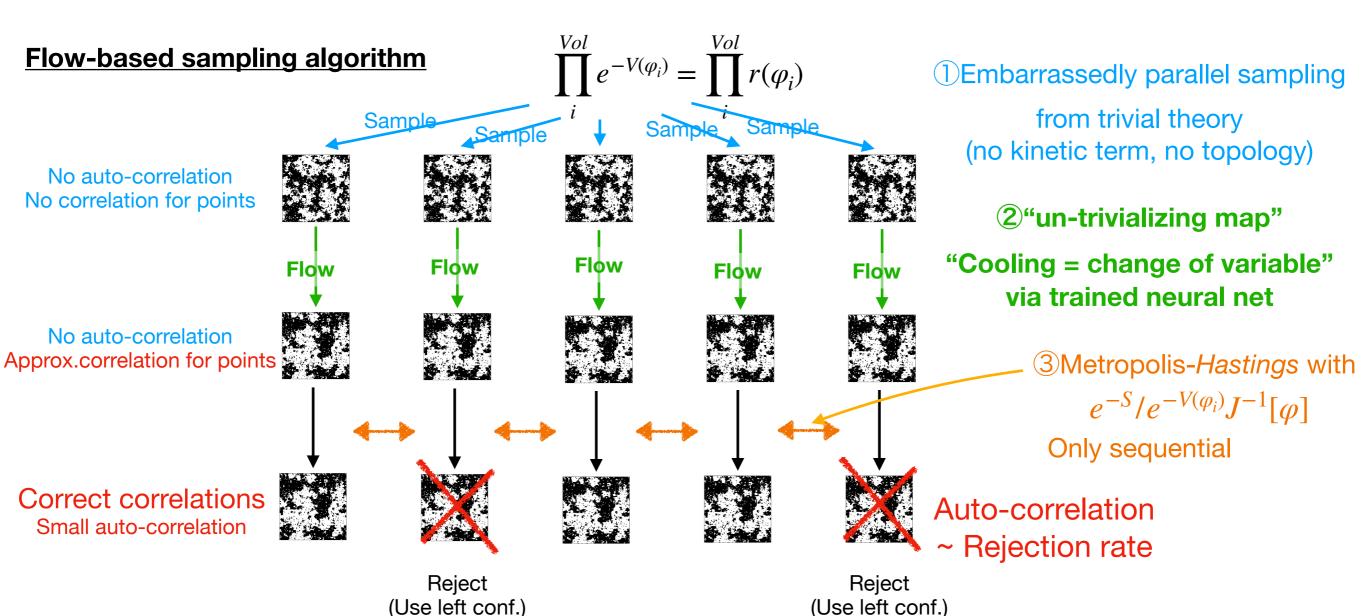
Flow based ML for QFT

MIT + Deepmind + ...

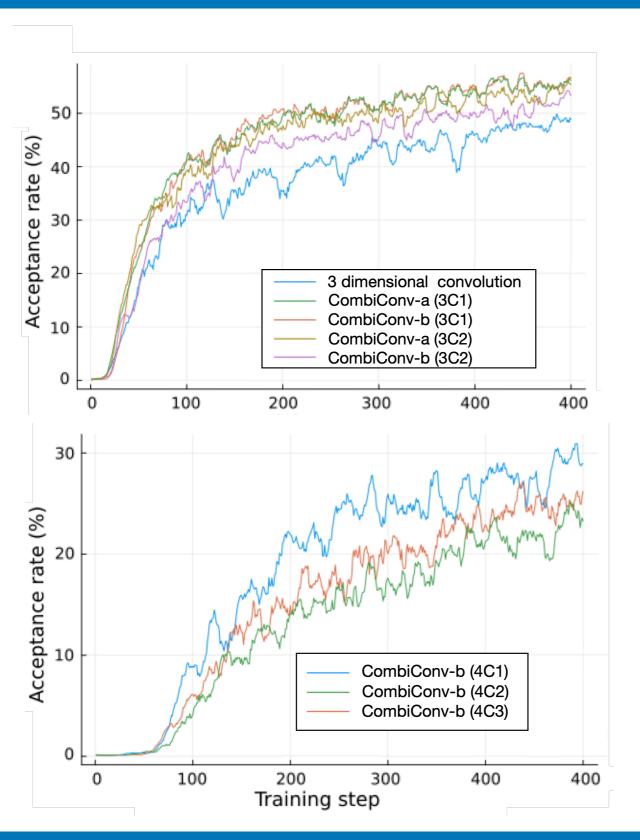


Original integral: hard

Easy



We make new convolutional layer for QFT in d-dim

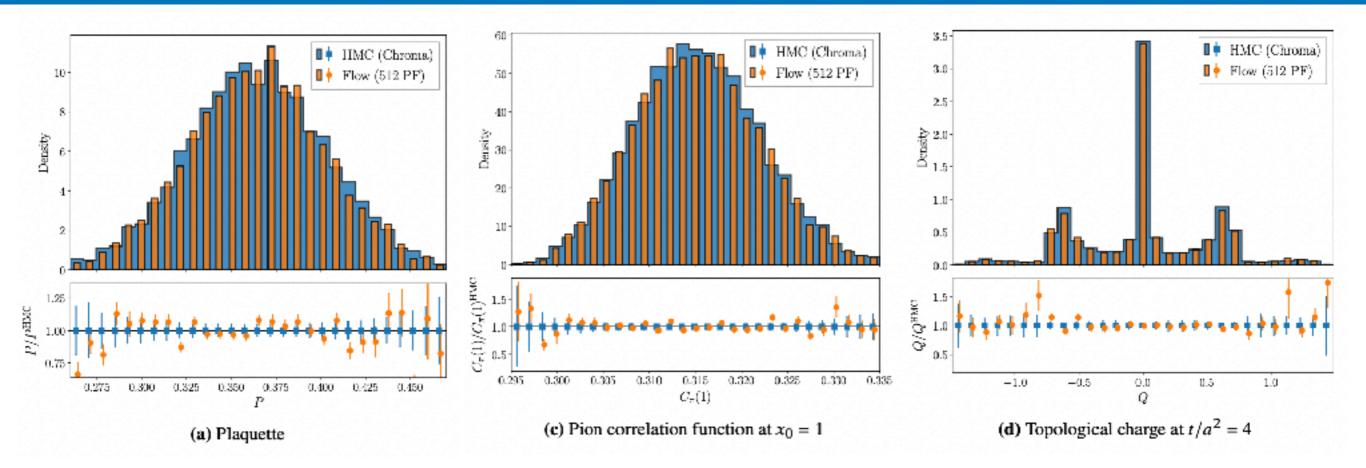


- •We implement CombiConv for flow-based sampling algorithm for d-dimensional scalar field theory on the lattice
- •3d convolution is available on GomalizingFlow.jl [1], open source implementation of flow-based sampling algorithm

$$nCk = \frac{n!}{k!(n-k)!}$$

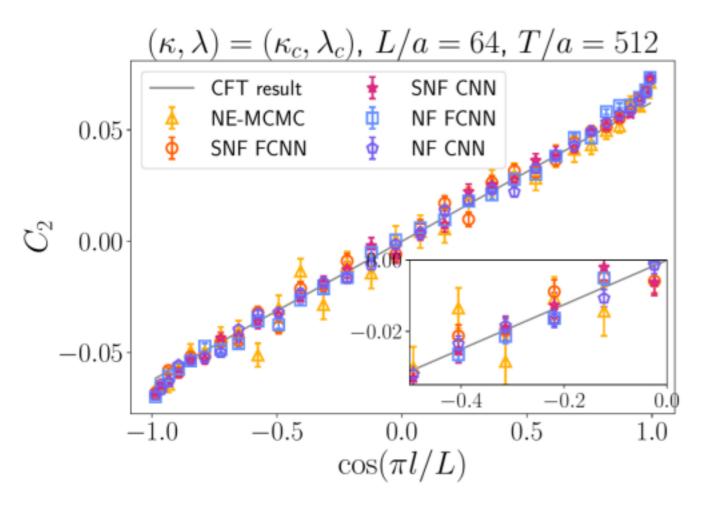
- •nCk = $\frac{n!}{k!(n-k)!}$ •In 3d, the acceptance rate is improved for CombiConv compared with the conventional 3d convolution
- •In 4d, it works well for any combination of lower dimensional convolution
- This works in any number of dimensions.

Flow based sampling algorithm Full QCD in L=4



Very heavy pion but dynamical QCD

Monte-Carlo integration is available



Flow based model mimics the partition function -> one can calculate the entanglement entropy

$$C = \frac{l^{D-1}}{|\partial A|} \frac{\partial S_A}{\partial l},$$

$$S_A = -\operatorname{Tr}(\rho_A \ln \rho_A), \quad \rho_A = \operatorname{Tr}_B \rho,$$

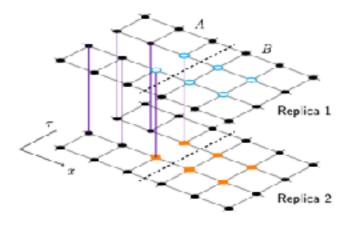


FIG. 1. (1+1)-dimensional lattice with two replicas (τ is the Euclidean-time direction). Purple links connect different replicas; dashed lines separate A and B. When defect coupling layers act on the configuration, the lattice is divided in three parts: the environment (black sites), which does not enter the coupling layer; frozen sites (empty cyan circles), that are the neural network input; active sites (orange diamonds), which are transformed by the layer.

Production of configurations Diffusion model as the stochastic quantization

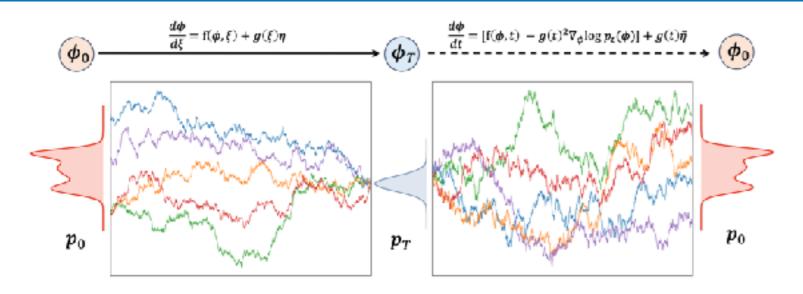


Figure 2: A sketch of the forward diffusion process (left panel) and the reverse denoising process (right panel). The two stochastic processes are described by two stochastic differential equations. The target distribution is typically unknown but learnt from the training data.

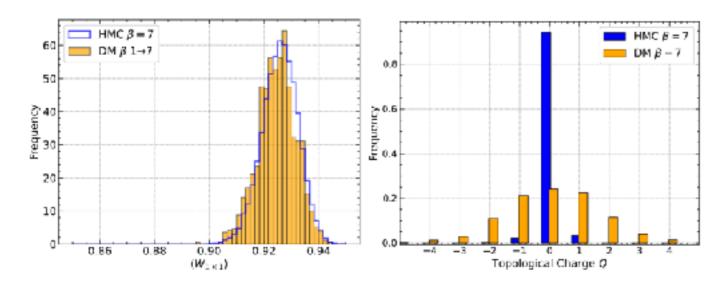


Figure 2: Comparison of distributions for the Wilson loop (left) and the topological charge (right) at $\beta=7$ from the test data-set (HMC) and from the DM trained at $\beta=1$ but conditioned at $\beta=7$. The number of independent configurations is 1,024 in both cases.

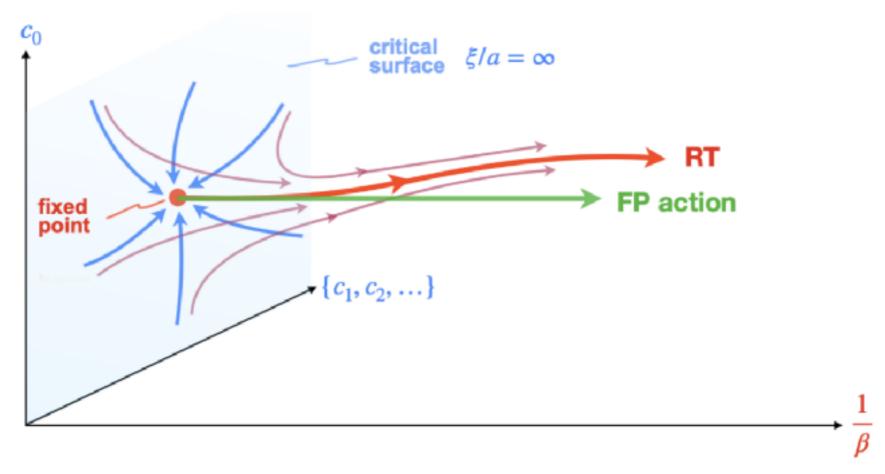
As same as diffusion model for generative AI, we can sample gauge configuration using backward Langevin with Metropolis test

1+1 U(1)
Lattice gauge theory

Misc

Perfect action

If a lattice action is close to a fixed point, it has *no* discretization effects

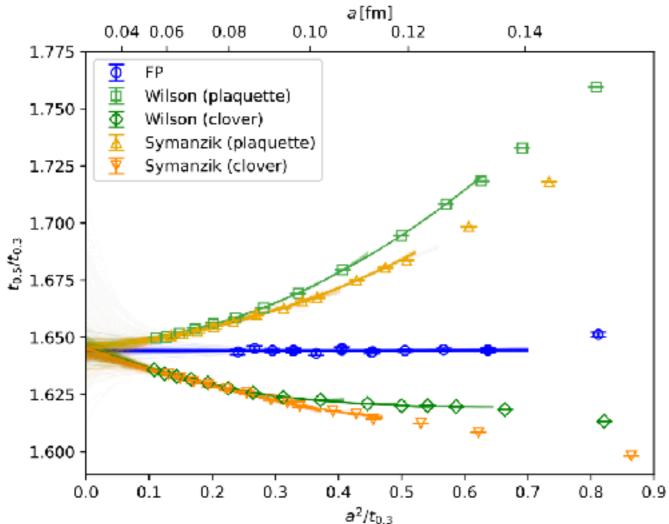


According to P. Hasenfratz's proposal, we can realize a (classical) "perfect action"

A saddle point solution of the Boltzmann weight

Perfect action

$$\exp\left(-\beta'S'[V]\right) = \int DU \exp(-\beta\{S[U] + T[U, V]\})$$
Blocking kernel
$$\Rightarrow \qquad c_0 \rightarrow \qquad + c_1 \qquad \text{(and highly parametrized via gauge cov net)}$$



$$t^2 \langle E(t) \rangle \Big|_{t=t_c} = c$$

$$\frac{t_{0.5}(a)}{t_{0.3}(a)} = \left(\frac{t_{0.5}}{t_{0.3}}\right)_{a=0} \left[1 + b\frac{a^2}{t_{0.3}} + O\left(\frac{a^4}{t_{0.3}^2}\right)\right]$$

FIG. 1. Continuum-limit extrapolations for the ratios $t_{0.3}/w_{0.3}^2$ and $t_{0.5}/t_{0.3}$. Results from Wilson and Symanzik MC simulations are shown using plaquette and clover discretizations of the action density.

Summary M + lattice field theory

This talk is based on JPSJ 94 (2025) 3, 031006

- Production and measurement need numerical cost
- Machine learning is useful for natural science/physics/Lattice QCD
 - to reduce cost in different ways
 - Supervised learning requires data ahead of training
 - Self-learning does not require it (SLHMC&Flow).
- Now, machine learning techniques are bias free
 - Gauge case, architectures are gauge covariant!
 - We can remove bias from ML
- Some results show better than existing algorithms (not all)

