Bias with a Timer: Axion Domain Wall Decay and Dark Matter

Sally Y. Hao*, **Shota Nakagawa***, Yuichiro Nakai*, & Motoo Suzuki[#] *TDLI in China, #SISSA in Italy 2507.12268

PPP2025

I. Motivation

QCD axion can explain the strong CP problem and dark matter (DM) simultaneously. Weinberg (1978), Wilczek (1978)

Gelmini, Gleiser, Kolb (1989)

However, when the SSB of $U(1)_{PO}$ after inflation, domain walls (DW) form and might dominate the Universe.

A possible solution is potential bias.

One problem is that a potential bias can spoil the Peccei-Quinn (PQ) mechanism at the same time.

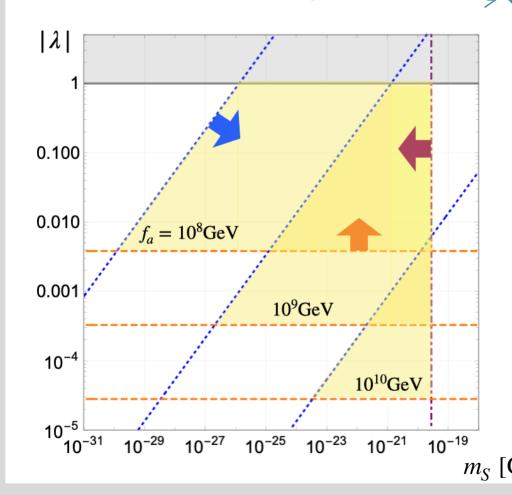
Can we turn off the bias term after DW collapse?

2. PQ mechanism with a light scalar

Hao, SN, Nakai, Suzuki (2025)

We introduce a light complex scalar field S mixed with the PQ scalar P: Ibe, Kobayashi, Suzuki, Yanagida (2020)

$$V_{\mathrm{PQ}}(P,S) \supset m_S^2 |S|^2 + rac{1}{(n!)^2} rac{\lambda_S^2}{M_{\mathrm{Pl}}^{2n-4}} |S|^{2n} + \left(rac{\lambda}{m!\ell! M_{\mathrm{Pl}}^{m+\ell-4}} S^m P^\ell + \mathrm{h.c.} \right)$$


l, m, n: integers

$$|\ddot{S}| + 3H|\dot{S}| + \frac{n\lambda_S^2}{(n!)^2 M_{\rm Pl}^{2n-4}} |S|^{2n-1} = 0$$
 $\langle |S| \rangle \propto \left(\frac{H}{M_{\rm Pl}}\right)^{\frac{1}{n-1}} M_{\rm Pl}$

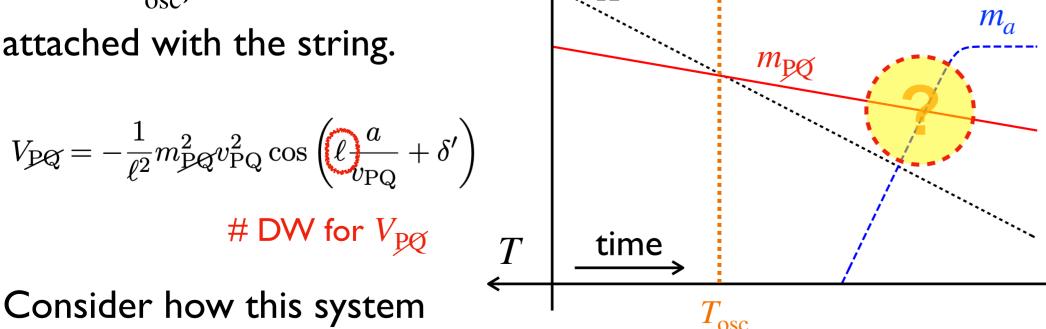
An effective PQ breaking potential is induced.

$$V_{\text{PQ}} \simeq -\frac{1}{\ell^2} m_{\text{PQ}}^2 v_{\text{PQ}}^2 \cos \left(\ell \frac{a}{v_{\text{PQ}}} + m \frac{b}{\chi} + \delta \right) \qquad m_{\text{PQ}}^2(T) \simeq \frac{|\lambda| \ell^2}{2^{\ell/2 - 1} m! \ell!} \frac{\langle S \rangle^m v_{\text{PQ}}^{\ell - 2}}{M_{\text{Pl}}^{m + \ell - 4}}$$

When $H \sim m_S$, S starts to oscillate around the origin $(S \sim 0)$, and the effective potential V_{PO} disappears.

ullet We assume $V_{\mbox{PO}}$ remains at least until QCD scale.

$$m_S \lesssim \sqrt{\frac{\pi^2 g_*}{90}} \frac{\Lambda_{\rm QCD}^2}{M_{\rm Pl}} \simeq 3 \times 10^{-11} {\rm eV}$$
• $T_{\rm OSC} > T_{\rm OSC}^{\rm (conv)}$


To avoid backreaction

$$\frac{1}{(n!)^2} \frac{\lambda_S^2}{M_{\text{Pl}}^{2n-4}} |S|^{2n} > \frac{|\lambda|}{m! l! M_{\text{Pl}}^{m+l-4}} |S|^m v_{\text{PQ}}^l$$

Hao, **SN**, Nakai, Suzuki (2025)

3. Evolution of string-wall system

At $T < T_{\rm osc}$, the l walls are attached with the string.

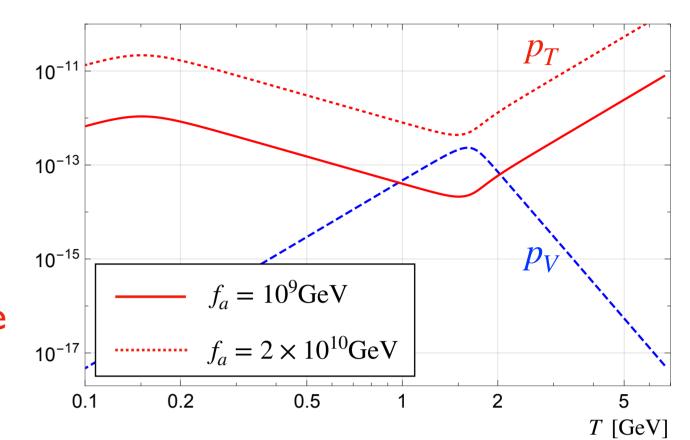
Consider how this system

can collapse from the following aspects:

- Volume pressure
- (ii) Structural instability

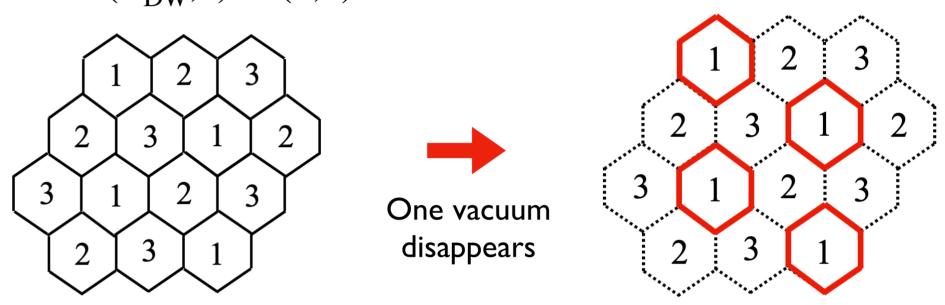
(i) Volume pressure

The potential difference induces the volume pressure on the domain wall, which makes the system unstable when $p_V \sim p_T$.


Volume pressure

$$p_V \sim \Delta V$$

Tension force

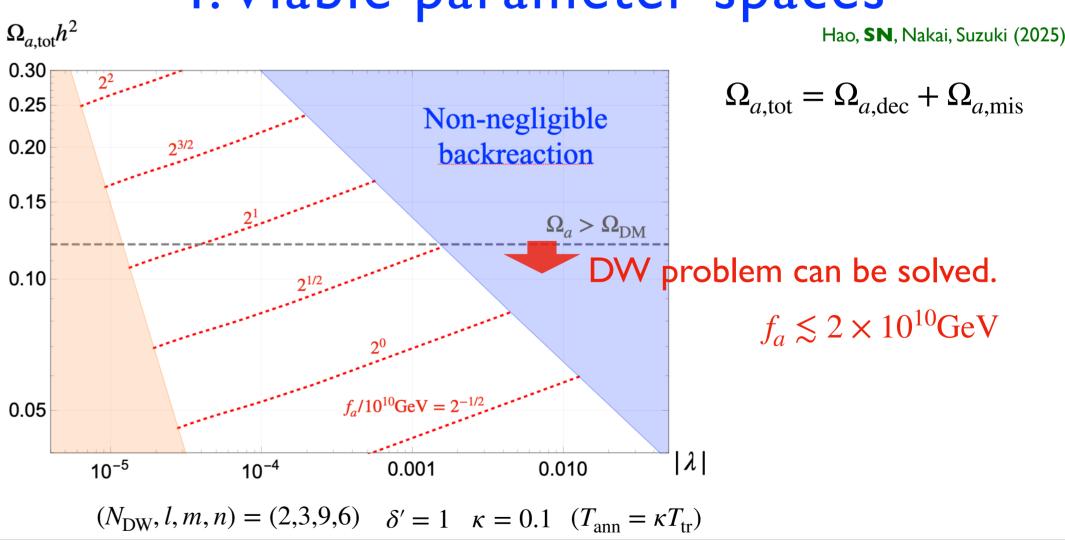

$$p_T \sim \sigma_{\text{wall}} H$$

 $f_a \lesssim 10^9 \text{GeV}$ is required for the system collapse due to p_V .

(ii) Structural instability

Consider $(N_{DW}, l) = (2,3)$.

In addition, the axion distribution is biased at the QCD scale. As a result, such systems may be broken soon. Kitajima, Lee, Takahashi, Yin (2023)


When $|V_{\rm PQ}| \sim |V_{\rm QCD}|$, the system seems to be most unstable.

$$m_{PQ}(T_{
m tr}) \sim rac{\ell}{N_{
m DW}} m_a(T_{
m tr}) \leftrightarrow T_{
m tr} \simeq 1.6 \ {
m GeV} \left(rac{|\lambda|}{0.01}
ight)^{-lpha} \left(rac{v_{PQ}}{2 imes 10^9 \ {
m GeV}}
ight)^{-\elllpha}$$

We assume that the annihilation occurs at $T_{\rm ann} = \kappa T_{\rm tr}$.

$$\Omega_{a,\mathrm{dec}}h^2 \simeq 0.12 \frac{1}{\sqrt{1+\epsilon_a^2}} \left(\frac{\kappa}{0.1}\right)^{-1} \left(\frac{|\lambda|}{2\times 10^{-4}}\right)^{\alpha} \left(\frac{N_{\mathrm{DW}}}{2}\right)^{\ell\alpha} \left(\frac{f_a}{2.4\times 10^{10}~\mathrm{GeV}}\right)^{1+\ell\alpha}$$

4. Viable parameter spaces

Summary

- We consider the DW problem by introducing a mixing coupling between the PQ scalar and a light scalar.
- The mixing coupling induces a time-dependent bias potential, which makes the string-DW system unstable.
- In addition of misalignment contribution, we show that the overproduction can be avoided for $f_a \lesssim 10^{10} \text{GeV}$, even in the presence of small volume pressure.