

Implication of Nonlinear-Supersymmetric General Relativity(NLSGR)

Wednesday, September 3, 2025 3:45 PM (2 hours)

Considering (unstable) Riemann space-time whose tangent space possesses NL SUSY structure specified by the Grassmann coordinates ψ^α for $SL(2,C)$ and the ordinary Minkowski coordinates x^α for $SO(1,3)$. we can construct the unified vierbein e^α_μ which enables the ordinary geometric argument of the general relativity(GR) principle and obtain straightforwardly a new Einstein-Hilbert(EH)-type NLSUSY invariant action $L_{NLSGR} = \int d^4x (R - \Lambda)$ (Nonlinear-supersymmetric general relativity theory(NLSGR)) equipped with the cosmological term Λ and the promising gauge symmetries.

Due to the NLSUSY structure of space-time L_{NLSGR} would break down (called Big Collapse) spontaneously to ordinary EH action of graviton e^μ_μ , NLSUSY action of Nambu-Goldstone(NG) fermion $\psi^i, i = 1, 2, \dots, N$ (called superon) and their gravitational interaction called superon-graviton action $LSGM(e, \psi)$.

Simultaneously the universal attractive force graviton would dictate the evolution (vacuum) of $LSGM$ by producing all possible gravitational-composites of superons which correspond to the (massless) eigenstates of the linear SUSY(LSUSY) $SO(N)$ super-Poincaré(SP) algebra of space-time symmetry, which can be regarded as the ignition of the Big Bang (model) of the universe and gives a new paradigm for the supersymmetric unification of space-time and matter.

By the linearization of NLSUSY we show in the toy model that the ordinary linear SUSY(LSUSY) model for the low energy particle physics can emerge in the vacuum of L_{NLSGR}/SGM , where all particles are the (massless) superon-composite eigenstates of LSUSY super Poincaré algebra.

L_{NLSGR}/SGM paradigm can bridge naturally the cosmology and the low energy particle physics, which provides new insights into unsolved problems of cosmology, particle physics and mysterious relations between them, e.g. the space-time dimension four, the origin of mass and SUSY breaking, the dark energy and the dark matter, the dark energy density \approx (neutrino mass)⁴, the tiny neutrino mass, the three-generations structure of quarks and leptons, the rapid expansion of space time, the magnitude of the bare gauge coupling constant, matter dominance, the shape of black hole etc.

Many open problems are discussed. All results are published separately. For more details:

1. K. Shima, Invited talk at International Conference, 100 Years Werner Heisenberg- Works and Impact-, September 26-30, 2021, Bamberg, Germany. Proceedings: *Fortschr. Phys.* 50(2002) 5-7. 517-523, eds. D. Papenfuss, D. Luest and W. P. Schleich.
2. K. Shima, Invited talk at Conference on Cosmology, Gravitational Waves and Particles, 2017, NTU, Singapore (Uploaded at YouTube by IAS). Proceedings of CCGWP, ed. Harald Fritzsch, (World Scientific, Singapore, 20

Primary author: Prof. SHIMA, Kazunari (Saitama Institute of Technology)

Presenter: Prof. SHIMA, Kazunari (Saitama Institute of Technology)

Session Classification: ポスター 2