indico アカウント作成の承認は、自動ではなく平日8:30-17:15 の間に手動で行われるため、それ以外の時間帯は承認されるまでに時間がかかってしまいます。申し訳ございません。 The approval of indico account creation is done manually between 8:30 am and 5:15 pm on weekdays (JST).

October 14, 2024 to November 15, 2024
YITP
Asia/Tokyo timezone

Diquark Mass and Quark-Diquark Potential from Lattice QCD

Oct 24, 2024, 2:30 PM
30m
Panasonic Auditorium, Yukawa Hall (YITP)

Panasonic Auditorium, Yukawa Hall

YITP

1st and 2nd weeks (Hadron structure and interactions) Seminar (1,2 week)

Speaker

KAI WEN KELVIN LEE (Research Center for Nuclear Physics (RCNP), Osaka University)

Description

In this work, to calculate the diquark mass together with the quark-diquark potential, we apply an extended HAL QCD potential method to a baryonic system made up from a static quark and a diquark where we consider various types of diquarks (eg: scalar $0^{+}$ diquark, axial-vector $1^{+}$ diquark etc). Numerical calculations are performed employing 2+1 flavor QCD gauge configurations generated by CP-PACS and JLQCD Collaborations on a $L^3 \times T=16^3 \times 32$ lattice with $m_{\pi} \sim 1$ GeV. We consider several combinations of source and sink operator for the quark propagators, for example, wall-source with point sink and Gaussian smeared source with Gaussian smeared sink etc. To improve the statistical noise in the propagators of the static quark, we also employ the HYP smearing on the gauge links. Two-point correlators of quark-diquark baryonic system are then computed to obtain their ground-state energies. For the baryonic system made up from a scalar diquark and a static quark, we apply an extended HAL QCD method to study the scalar diquark mass and the quark-diquark potential where, in order to determine the diquark mass self-consistently in the HAL QCD method, we demand that the baryonic spectrum in the p-wave sector should be reproduced by the potential obtained from the baryonic system in the s-wave sector. We obtain the scalar diquark mass of roughly $(2/3) m_{N}$, i.e., twice the naïve estimates of a constituent quark mass together with the quark-diquark potential of Cornell type (Coulomb + linear).

Primary author

KAI WEN KELVIN LEE (Research Center for Nuclear Physics (RCNP), Osaka University)

Co-author

NORIYOSHII ISHII (Research Center for Nuclear Physics, Osaka University)

Presentation materials