indico アカウント作成の承認は、自動ではなく平日8:30-17:15 の間に手動で行われるため、それ以外の時間帯は承認されるまでに時間がかかってしまいます。申し訳ございません。 The approval of indico account creation is done manually between 8:30 am and 5:15 pm on weekdays (JST).

October 14, 2024 to November 15, 2024
YITP
Asia/Tokyo timezone

Index of lattice Dirac operators and K-theory

Oct 30, 2024, 3:00 PM
30m
Panasonic Auditorium, Yukawa Hall (YITP)

Panasonic Auditorium, Yukawa Hall

YITP

3rd week (Nishinomiya-Yukawa symposium) Nishinomiya-Yukawa workshop

Speaker

Hidenori Fukaya (Osaka Univ.)

Description

We mathematically show an equality between the index of a Dirac operator on a flat continuum torus and the $\eta$ invariant of the Wilson Dirac operator with a negative mass when the lattice spacing is sufficiently small. Unlike the standard approach, our formulation using the $K$-theory does not require the Ginsparg-Wilson relation or the modified chiral symmetry on the lattice. We prove that a one-parameter family of continuum massive Dirac operators and the corresponding Wilson Dirac operators belong to the same equivalence class of the $K^1$ group at a finite lattice spacing. Their indices, which are evaluated by the spectral flow or equivalently by the $\eta$ invariant at finite masses, are proved to be equal.

Primary authors

Dr Shoto Aoki (U. Tokyo, Komaba) Hidenori Fukaya (Osaka Univ.) Prof. Mikio Furuta (U. Tokyo, Komaba) Prof. Shinichiroh Matsuo (Nagoya U.) Prof. Tetsuya Onogi (Osaka Univ.) Prof. Satoshi Yamaguchi (Osaka Univ.)

Presentation materials